박사

Heterogeneous Iron and Ruthenium Catalysts for Carbohydrate Based Biomass Transformations : 탄수화물기반 바이오매스 전환을 위한 불균일계 철과 루테늄 촉매에 관한 연구

김요한 2015년
논문상세정보
' Heterogeneous Iron and Ruthenium Catalysts for Carbohydrate Based Biomass Transformations : 탄수화물기반 바이오매스 전환을 위한 불균일계 철과 루테늄 촉매에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 5-하이드록시메틸 푸르푸랄
  • 그린화학
  • 바이오매스 전환
  • 불균일계 촉매
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
10 0

0.0%

' Heterogeneous Iron and Ruthenium Catalysts for Carbohydrate Based Biomass Transformations : 탄수화물기반 바이오매스 전환을 위한 불균일계 철과 루테늄 촉매에 관한 연구' 의 참고문헌

  • Zimmerman, P.T.A.J.B., Innovations in Green Chemisgry and Green Engineering,ed. P.T.A.J.B. Zimmerman2013, New York: Springer.
  • Zhao, H.B., et al., Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 2007. 316(5831): p. 1597-1600.
  • Yu, H., et al., Capacitance dependent catalytic activity of RuO2[middledot]xH2O/CNT nanocatalysts for aerobicoxidation of benzyl alcohol. ChemicalCommunications, 2009(17): p. 2408-2410.
  • Yoon, H.J., et al., Polymer-supported gadolinium triflate as a convenient andefficient Lewis acid catalyst for acetylation of alcohols and phenols. TetrahedronLetters, 2008. 49(19): p. 3165-3171.
  • Yong, G., Y.G. Zhang, and J.Y. Ying, Efficient Catalytic System for the SelectiveProduction of 5-Hhydroxymethylfurfural from Glucose and Fructose. AngewandteChemie-International Edition, 2008. 47(48): p. 9345-9348.
  • Yamaguchi, K., et al., Tin-Tungsten Mixed Oxide as Efficient Heterogeneous Catalystfor Conversion of Saccharides to Furan Derivatives. Chemistry Letters, 2011. 40(5):p. 542-543.
  • Yamaguchi, K. and N. Mizuno, Supported ruthenium catalyst for the heterogeneousoxidation of alcohols with molecular oxygen. Angewandte Chemie-InternationalEdition, 2002. 41(23): p. 4538-+.
  • Xin, B. and J. Hao, Imidazolium-based ionic liquids grafted on solid surfaces.Chemical Society Reviews, 2014. 43(20): p. 7171-7187.
  • Wilsens, C.H.R.M., et al., Thermotropic Polyesters from 2,5-Furandicarboxylic Acidand Vanillic Acid: Synthesis, Thermal Properties, Melt Behavior, and MechanicalPerformance. Macromolecules, 2014. 47(10): p. 3306-3316.
  • Wang, Z., et al., Enhancing lithium?sulphur battery performance by strongly bindingthe discharge products on amino-functionalized reduced graphene oxide. NatureCommunications, 2014. 5.
  • Wang, Z., et al., Cooperativity of Br nsted and Lewis Acid Sites on Zeolite forGlycerol Dehydration. Acs Catalysis, 2014. 4(4): p. 1144-1147.
  • Wang, H.L., et al., Graphene Oxide Catalyzed Dehydration of Fructose into 5-134Hydroxymethylfurfural with Isopropanol as Cosolvent. Chemcatchem, 2014. 6(3): p.728-732.
  • Wang, F., et al., Catalytic behavior of supported Ru nanoparticles on the (101) and(001) facets of anatase TiO2. Rsc Advances, 2014. 4(21): p. 10834-10840.
  • Vyas, A.P., J.L. Verma, and N. Subrahmanyam, A review on FAME productionprocesses. Fuel, 2010. 89(1): p. 1-9.
  • Vuyyuru, K.R. and P. Strasser, Oxidation of biomass derived 5-hydroxymethylfurfural using heterogeneous and electrochemical catalysis. CatalysisToday, 2012. 195(1): p. 144-154.
  • Vinke, P.v.D., H. E.; van Bekkum, H. , New Developments in SelectiveOxidation1990, New York: Elsevier.
  • Vinke, P., H.E. van Dam, and H. van Bekkum, Platinum Catalyzed Oxidation of 5-Hydroxymethylfurfural. Studies in Surface Science and Catalysis, 1990. Volume 55:p. 147-158.
  • Villa, A., et al., Pd-modified Au on Carbon as an Effective and Durable Catalyst forthe Direct Oxidation of HMF to 2,5-Furandicarboxylic Acid. Chemsuschem, 2013.1496(4): p. 609-612.
  • Van Doorslaer, C., et al., Immobilization of molecular catalysts in supported ionicliquid phases. Dalton Transactions, 2010. 39(36): p. 8377-8390.
  • Tong, X., et al., Defunctionalization of fructose and sucrose: Iron-catalyzedproduction of 5-hydroxymethylfurfural from fructose and sucrose. Catalysis Today,2011. 175(1): p. 524-527.
  • Tong, X., Y. Ma, and Y. Li, Biomass into chemicals: Conversion of sugars to furanderivatives by catalytic processes. Applied Catalysis A: General, 2010. 385(1?2): p.1-13.
  • Tamura, M., et al., Rapid synthesis of unsaturated alcohols under mild conditions byhighly selective hydrogenation. Chemical Communications, 2013. 49(63): p. 7034-7036.
  • Taarning, E., et al., Chemicals from renewables: Aerobic oxidation of furfural andhydroxymethylfurfural over gold catalysts. Chemsuschem, 2008. 1(1-2): p. 75-78.
  • Stocker, M., Biofuels and Biomass-To-Liquid Fuels in the Biorefinery: Catalytic131Conversion of Lignocellulosic Biomass using Porous Materials. AngewandteChemie-International Edition, 2008. 47(48): p. 9200-9211.
  • Sokol, A.A., et al., Point defects in ZnO. Faraday Discussions, 2007. 134: p. 267-282.
  • Sidhpuria, K.B., et al., Supported ionic liquid silica nanoparticles (SILnPs) as anefficient and recyclable heterogeneous catalyst for the dehydration of fructose to 5-hydroxymethylfurfural. Green Chemistry, 2011. 13(2): p. 340-349.147
  • Shi, Z., et al., Recent advances in transition-metal catalyzed reactions usingmolecular oxygen as the oxidant. Chemical Society Reviews, 2012. 41(8): p. 3381-3430.
  • Sheldon, R.A.R.A.v.S.E., Catalytic Oxidation: Principles and Applications1995,Singapore: World Scientific.
  • Sheldon, R.A.K., J. K., Metal-Catalyzed Oxidations of Organic Compounds1981,New York: Academic Press.
  • Sheldon, R.A.A., Isabel; Hanefeld, Ulf, Green Chemistry and Catalysis2007,Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA.
  • Sheldon, R.A., Green and sustainable manufacture of chemicals from biomass: stateof the art. Green Chemistry, 2014. 16(3): p. 950-963.
  • Sheldon, R.A., Fundamentals of green chemistry: efficiency in reaction design.Chemical Society Reviews, 2012. 41(4): p. 1437-1451.
  • Scott, C.E., et al., Interaction between Ruthenium and Molybdenum in Rumo/Al2o3Catalysts. Applied Catalysis a-General, 1995. 125(1): p. 71-79.
  • Schmidt, L.D. and P.J. Dauenhauer, Chemical engineering - Hybrid routes to biofuels.Nature, 2007. 447(7147): p. 914-915.
  • Roman-Leshkov, Y., et al., Production of dimethylfuran for liquid fuels frombiomass-derived carbohydrates. Nature, 2007. 447(7147): p. 982-986.
  • Roman-Leshkov, Y., J.N. Chheda, and J.A. Dumesic, Phase modifiers promoteefficient production of hydroxymethylfurfural from fructose. Science, 2006.312(5782): p. 1933-1937.
  • Riener, K., et al., Chemistry of Iron N-Heterocyclic Carbene Complexes: Syntheses,Structures, Reactivities, and Catalytic Applications. Chemical Reviews, 2014.
  • Qi, X.H., et al., Sulfated zirconia as a solid acid catalyst for the dehydration offructose to 5-hydroxymethylfurfural. Catalysis Communications, 2009. 10(13): p.1771-1775.
  • Qi, X.H., et al., Fast Transformation of Glucose and Di-/Polysaccharides into 5-Hydroxymethylfurfural by Microwave Heating in an Ionic Liquid/Catalyst System.Chemsuschem, 2010. 3(9): p. 1071-1077.
  • Qi, X.H., et al., Efficient process for conversion of fructose to 5-hydroxymethylfurfural with ionic liquids. Green Chemistry, 2009. 11(9): p. 1327-1351331.
  • Qi, X.H., et al., Efficient one-pot production of 5-hydroxymethylfurfural from inulinin ionic liquids. Green Chemistry, 2010. 12(10): p. 1855-1860.
  • Poliakoff, M., et al., Green chemistry: Science and politics of change. Science, 2002.297(5582): p. 807-810.
  • Plietker, B.B., M., Iron Catalysis: Fundamentals and Applications2011, Berlin,Germany: Springer.
  • Pilla, S., Engineering Applications of Bioplastics and Biocomposites-an Overview.Handbook of Bioplastics and Biocomposites Engineering Application, ed. S. Pilla,2011, Salem, Massachusetts: Scrivener Publishing LLC, Wiley-VCH Verlag GmbH& Co. KGaA.
  • Paul, T.A.J.C.W., Green Chemistry: Theory and Practice, 1998, Oxford: OxfordUniversity Press.
  • Pasini, T., et al., Selective oxidation of 5-hydroxymethyl-2-furfural using supportedgold-copper nanoparticles. Green Chemistry, 2011. 13(8): p. 2091-2099.
  • Pan, T., et al., Catalytic conversion of biomass-derived levulinic acid to valerateesters as oxygenated fuels using supported ruthenium catalysts. Green Chemistry,2013. 15(10): p. 2967-2974.138
  • Pagan-Torres, Y.J., et al., Production of 5-Hydroxymethylfurfural from GlucoseUsing a Combination of Lewis and Bronsted Acid Catalysts in Water in a BiphasicReactor with an Alkylphenol Solvent. Acs Catalysis, 2012. 2(6): p. 930-934.
  • Nerozzi, F., Heterogeneous Catalytic Hydrogenation Platinum group metals ashydrogenation catalysts in a two-day course. Platinum Metals Review, 2012. 56(4):142p. 236-241.
  • Nakagawa, Y., M. Tamura, and K. Tomishige, Catalytic Reduction of Biomass-Derived Furanic Compounds with Hydrogen. Acs Catalysis, 2013. 3(12): p. 2655-2668.
  • Murahashi, S.-I. and D. Zhang, Ruthenium catalyzed biomimetic oxidation in organicsynthesis inspired by cytochrome P-450. Chemical Society Reviews, 2008. 37(8): p.1490-1501.
  • Moreau, C., M.N. Belgacem, and A. Gandini, Recent catalytic advances in thechemistry of substituted furans from carbohydrates and in the ensuing polymers.Topics in Catalysis, 2004. 27(1-4): p. 11-30.
  • Mascal, M. and E.B. Nikitin, High-yield conversion of plant biomass into the keyvalue-added feedstocks 5-(hydroxymethyl)furfural, levulinic acid, and levulinicesters via 5-(chloromethyl)furfural. Green Chemistry, 2010. 12(3): p. 370-373.
  • Marcano, D.C., et al., Improved Synthesis of Graphene Oxide. Acs Nano, 2010. 4(8):144p. 4806-4814.
  • Ma, J.P., et al., The copolymerization reactivity of diols with 2,5-furandicarboxylicacid for furan-based copolyester materials. Journal of Materials Chemistry, 2012.22(8): p. 3457-3461.
  • Lozano, P., et al., Immobilised Lipase on Structured Supports Containing CovalentlyAttached Ionic Liquids for the Continuous Synthesis of Biodiesel in scCO2.Chemsuschem, 2012. 5(4): p. 790-798.
  • Lloyd, L., Handbook of Industrial Catalysts 2011, Berlin, Germany: Springer:.
  • Lippard, S.J.B., J. M., Principles of Bioinorganic Chemistry1994, Mill Valley, CA:University Science Books.
  • Lilga, M., et al., Hydroxymethylfurfural Reduction Methods and Methods ofProducing Furandimethanol, 2007, Google Patents.
  • Lilga, M., R. Hallen, and M. Gray, Production of Oxidized Derivatives of 5-Hydroxymethylfurfural (HMF). Topics in Catalysis, 2010. 53(15-18): p. 1264-1269.
  • Lansalot-Matras, C. and C. Moreau, Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids. Catalysis Communications,2003. 4(10): p. 517-520.
  • Laboratory, N.R.E., Top Value Added Chemicals From Biomass Volume I: Results ofScreening for Potential Candidates from Sugars and Synthesis Gas 2004.
  • Kunkes, E.L., et al., Catalytic Conversion of Biomass to MonofunctionalHydrocarbons and Targeted Liquid-Fuel Classes. Science, 2008. 322(5900): p. 417-421.
  • Kourieh, R., et al., Relation between surface acidity and reactivity in fructoseconversion into 5-HMF using tungstated zirconia catalysts. CatalysisCommunications, 2013. 30(0): p. 5-13.
  • King II, J.L.K., A. W., Benecke, H. P.; Mitchell, K. P.; Clingerman, M. C., 2008.
  • Kim, Y.H., et al., Zirconia-Supported Ruthenium Catalyst for Efficient AerobicOxidation of Alcohols to Aldehydes. Industrial & Engineering Chemistry Research,2014. 53(31): p. 12548-12552.
  • Kim, M.S., et al., Characteristics and processing effects of ZrO2 thin films grown bymetal-organic molecular beam epitaxy. Applied Surface Science, 2004. 227(1-4): p.387-398.
  • Karinen, R., K. Vilonen, and M. Niemela, Biorefining: Heterogeneously CatalyzedReactions of Carbohydrates for the Production of Furfural andHydroxymethylfurfural. Chemsuschem, 2011. 4(8): p. 1002-1016.
  • Kang, E.-S., et al., Efficient preparation of DHMF and HMFA from biomass-derivedHMF via a Cannizzaro reaction in ionic liquids. Journal of Industrial and148Engineering Chemistry, 2012. 18(1): p. 174-177.
  • Jawaid, M. and H.P.S. Abdul Khalil, Cellulosic/synthetic fibre reinforced polymerhybrid composites: A review. Carbohydrate Polymers, 2011. 86(1): p. 1-18.
  • Initiative, B.R.a.D., Vision for bioenergy and biobased products in the united states,2006.
  • Ilgen, F., et al., Conversion of carbohydrates into 5-hydroxymethylfurfural in highly136concentrated low melting mixtures. Green Chemistry, 2009. 11(12): p. 1948-1954.
  • Huheey, J.E.K., E. A.; Keiter, R. L.; Medhi, O. K.;, Inorganic Chemistry: Principlesof Structure and Reactivity2006, Upper Saddle River, NJ: Pearson Education.
  • Hu, S., et al., Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzedby a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 2009. 11(11): p.1746-1749.
  • Hu, L., et al., Catalytic conversion of biomass-derived carbohydrates into fuels andchemicals via furanic aldehydes. Rsc Advances, 2012. 2(30): p. 11184-11206.132
  • Hu, L., et al., Catalytic conversion of biomass-derived carbohydrates into fuels and133chemicals via furanic aldehydes. Rsc Advances, 2012. 2(30): p. 11184-11206.
  • Hopkinson, M.N., et al., An overview of N-heterocyclic carbenes. Nature, 2014.510(7506): p. 485-496.
  • Herrmann, J.M., Electronic Effects in Strong Metal Support Interactions on TitaniaDeposited Metal-Catalysts. Journal of Catalysis, 1984. 89(2): p. 404-412.
  • Hara, K., et al., Construction of self-assembled monolayer terminated with Nheterocycliccarbene-rhodium(I) complex moiety. Surface Science, 2007. 601(22): p.5127-5132.
  • Hansen, T.S., et al., One-pot reduction of 5-hydroxymethylfurfural via hydrogen140transfer from supercritical methanol. Green Chemistry, 2012. 14(9): p. 2457-2461.
  • Hansen, T.S., J.M. Woodley, and A. Riisager, Efficient microwave-assisted synthesisof 5-hydroxymethylfurfural from concentrated aqueous fructose. CarbohydrateResearch, 2009. 344(18): p. 2568-2572.
  • Han, Y. and J. Zhu, Surface Science Studies on the Zirconia-Based Model Catalysts.Topics in Catalysis, 2013. 56(15-17): p. 1525-1541.
  • Han, L., et al., Ionic liquids grafted on carbon nanotubes as highly efficientheterogeneous catalysts for the synthesis of cyclic carbonates. Applied Catalysis A:146General, 2012. 429?430(0): p. 67-72.
  • Han, L., et al., Ionic liquids containing carboxyl acid moieties grafted onto silica:Synthesis and application as heterogeneous catalysts for cycloaddition reactions ofepoxide and carbon dioxide. Green Chemistry, 2011. 13(4): p. 1023-1028.
  • Hales, R.A., 1962.
  • Gupta, N.K., et al., Hydrotalcite-supported gold-nanoparticle-catalyzed highlyefficient base-free aqueous oxidation of 5-hydroxymethylfurfural into 2,5-furandicarboxylic acid under atmospheric oxygen pressure. Green Chemistry, 2011.13(4): p. 824-827.
  • Gorbanev, Y.Y., et al., Gold-Catalyzed Aerobic Oxidation of 5-Hydroxymethylfurfural in Water at Ambient Temperature. Chemsuschem, 2009. 2(7):p. 672-675.
  • Giang, T.P.L., T.N.M. Tran, and X.T. Le, Preparation and characterization oftitanium dioxide nanotube array supported hydrated ruthenium oxide catalysts.Advances in Natural Sciences: Nanoscience and Nanotechnology, 2012. 3(1): p.015008.
  • Ganduglia-Pirovano, M.V., A. Hofmann, and J. Sauer, Oxygen vacancies intransition metal and rare earth oxides: Current state of understanding and remainingchallenges. Surface Science Reports, 2007. 62(6): p. 219-270.
  • Gallezot, P., Conversion of biomass to selected chemical products. Chemical SocietyReviews, 2012. 41(4): p. 1538-1558.
  • Fan, C.Y., et al., Conversion of fructose and glucose into 5-hydroxymethylfurfuralcatalyzed by a solid heteropolyacid salt. Biomass & Bioenergy, 2011. 35(7): p. 2659-2665.
  • Elliott, D.C. and G.G. Neuenschwander, Liquid Fuels by Low-Severity Hydrotreatingof Biocrude, in Developments in Thermochemical Biomass Conversion, A.V.Bridgwater and D.G.B. Boocock, Editors. 1997, Springer Netherlands. p. 611-621.
  • Dutta, A., et al., Synthesis of 5-Hydroxymethylfurural from Carbohydrates usingLarge-Pore Mesoporous Tin Phosphate. Chemsuschem, 2014. 7(3): p. 925-933.145
  • Duan, Z.Q. and F. Hu, Highly efficient synthesis of phosphatidylserine in the ecofriendlysolvent gamma-valerolactone. Green Chemistry, 2012. 14(6): p. 1581-1583.
  • Despax, S., et al., Fast and efficient DMSO-mediated dehydration of carbohydratesinto 5-hydroxymethylfurfural. Catalysis Communications, 2014. 51: p. 5-9.
  • Deng, T., et al., Conversion of carbohydrates into 5-hydroxymethylfurfural catalyzedby ZnCl2 in water. Chemical Communications, 2012. 48(44): p. 5494-5496.
  • Davis, S.E., et al., Oxidation of 5-hydroxymethylfurfural over supported Pt, Pd andAu catalysts. Catalysis Today, 2011. 160(1): p. 55-60.
  • Davis, S.E., M.S. Ide, and R.J. Davis, Selective oxidation of alcohols and aldehydesover supported metal nanoparticles. Green Chemistry, 2013. 15(1): p. 17-45.
  • Davis, S.E., B.N. Zope, and R.J. Davis, On the mechanism of selective oxidation of1395-hydroxymethylfurfural to 2,5-furandicarboxylic acid over supported Pt and Aucatalysts. Green Chemistry, 2012. 14(1): p. 143-147.
  • Czako, L.K.B., Strategic Apllications of Named Reactions in Organic Synthesis 2005,Burlington: Elsevier Inc.
  • Cotton, F.A.W., G.; Murille, C. A.; Bochmann, M., Advanced Inorganic Chemistry.6th Edition ed1999: Wiley-Interscience.
  • Climent, M.J., A. Corma, and S. Iborra, Heterogeneous Catalysts for the One-PotSynthesis of Chemicals and Fine Chemicals. Chemical Reviews, 2010. 111(2): p.1431072-1133.
  • Chidambaram, M. and A.T. Bell, A two-step approach for the catalytic conversion ofglucose to 2,5-dimethylfuran in ionic liquids. Green Chemistry, 2010. 12(7): p. 1253-1262.
  • Chheda, J.N., Y. Roman-Leshkov, and J.A. Dumesic, Production of 5-hydroxymethylfurfural and furfural by dehydration of biomass-derived mono- andpoly-saccharides. Green Chemistry, 2007. 9(4): p. 342-350.137
  • Chheda, J.N., G.W. Huber, and J.A. Dumesic, Liquid-phase catalytic processing ofbiomass-derived oxygenated hydrocarbons to fuels and chemicals. AngewandteChemie-International Edition, 2007. 46(38): p. 7164-7183.
  • Chen, J.Z., et al., Conversion of fructose into 5-hydroxymethylfurfural catalyzed byrecyclable sulfonic acid-functionalized metal-organic frameworks. Green Chemistry,2014. 16(5): p. 2490-2499.
  • Casanova, O., S. Iborra, and A. Corma, Biomass into chemicals: One pot-base freeoxidative esterification of 5-hydroxymethyl-2-furfural into 2,5-dimethylfuroate withgold on nanoparticulated ceria. Journal of Catalysis, 2009. 265(1): p. 109-116.
  • Cardoso, J.M.S. and B. Royo, Unprecedented synthesis of iron-NHC complexes byC-H activation of imidazolium salts. Mild catalysts for reduction of sulfoxides.Chemical Communications, 2012. 48(41): p. 4944-4946.
  • Cai, J., et al., Gold Nanoclusters Confined in a Supercage of Y Zeolite for AerobicOxidation of HMF under Mild Conditions. Chemistry ? A European Journal, 2013.19(42): p. 14215-14223.
  • Buntara, T., et al., Caprolactam from Renewable Resources: Catalytic Conversion of5-Hydroxymethylfurfural into Caprolactone. Angewandte Chemie-InternationalEdition, 2011. 50(31): p. 7083-7087.
  • Bozell, J.J. and G.R. Petersen, Technology development for the production ofbiobased products from biorefinery carbohydrates-the US Department of Energy's"Top 10" revisited. Green Chemistry, 2010. 12(4): p. 539-554.
  • Boudjennad, E., et al., Experimental and theoretical study of the Ni-(m-ZrO2)interaction. Surface Science, 2012. 606(15-16): p. 1208-1214.
  • Bitter, J.H., K. Seshan, and J.A. Lercher, On the contribution of X-ray absorption150spectroscopy to explore structure and activity relations of Pt/ZrO2 catalysts forCO2/CH4 reforming. Topics in Catalysis, 2000. 10(3-4): p. 295-305.
  • Bing, L., Z.H. Zhang, and K.J. Deng, Efficient One-Pot Synthesis of 5-(Ethoxymethyl)furfural from Fructose Catalyzed by a Novel Solid Catalyst. Industrial& Engineering Chemistry Research, 2012. 51(47): p. 15331-15336.
  • Binder, J.B. and R.T. Raines, Simple Chemical Transformation of LignocellulosicBiomass into Furans for Fuels and Chemicals. Journal of the American ChemicalSociety, 2009. 131(5): p. 1979-1985.
  • Bicker, M., J. Hirth, and H. Vogel, Dehydration of fructose to 5-hydroxymethylfurfural in sub- and supercritical acetone. Green Chemistry, 2003.5(2): p. 280-284.
  • Bermudez, J.M., et al., Continuous flow nanocatalysis: reaction pathways in theconversion of levulinic acid to valuable chemicals. Green Chemistry, 2013. 15(10):p. 2786-2792.
  • Benvenutti, E.V., et al., FTIR study of hydrogen and carbon monoxide adsorption onPt/TiO2, Pt/ZrO2, and Pt/Al2O3. Langmuir, 1999. 15(23): p. 8140-8146.
  • Bavykin, D.V., et al., TiO2 nanotube-supported ruthenium(III) hydrated oxide: Ahighly active catalyst for selective oxidation of alcohols by oxygen. Journal ofCatalysis, 2005. 235(1): p. 10-17.
  • Balu, R.L.A.M., Producing Fuels and Fine Chemicals from Biomass UsingNanomaterials2014, Boca Raton: CRC Press Taylor & Francis Group.
  • Anastas, P.T., Crabtree, Robert H., Leitner, Walter., Jessop, Philip G., Li, Chao-Jun.,Wasserscheid, Peter., Stark, Annegret. , Handbook of green chemistry, 2009,Weinheim: Wiley-VCH.
  • Amarasekara, A.S., L.D. Williams, and C.C. Ebede, Mechanism of the dehydrationof D-fructose to 5-hydroxymethylfurfural in dimethyl sulfoxide at 150 degrees C: anNMR study. Carbohydrate Research, 2008. 343(18): p. 3021-3024.
  • Alonso, D.M., S.G. Wettstein, and J.A. Dumesic, Gamma-valerolactone, asustainable platform molecule derived from lignocellulosic biomass. GreenChemistry, 2013. 15(3): p. 584-595.
  • Alonso, D.M., J.Q. Bond, and J.A. Dumesic, Catalytic conversion of biomass tobiofuels. Green Chemistry, 2010. 12(9): p. 1493-1513.
  • Alamillo, R., et al., The selective hydrogenation of biomass-derived 5-hydroxymethylfurfural using heterogeneous catalysts. Green Chemistry, 2012. 14(5):p. 1413-1419.
  • Ait Rass, H., N. Essayem, and M. Besson, Selective aqueous phase oxidation of 5-hydroxymethylfurfural to 2,5-furandicarboxylic acid over Pt/C catalysts: influenceof the base and effect of bismuth promotion. Green Chemistry, 2013. 15(8): p. 2240-2251.
  • Acharya, D.P., et al., Site-Specific Imaging of Elemental Steps in Dehydration of141Diols on TiO2(110). Acs Nano, 2013. 7(11): p. 10414-10423.