박사

3D 입체 변별 과제에서 공간 인지 전략의 유형과 역할: 체화된 3D 거북 표현식과 전략을 중심으로

이지윤 2015년
논문상세정보
' 3D 입체 변별 과제에서 공간 인지 전략의 유형과 역할: 체화된 3D 거북 표현식과 전략을 중심으로' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 3d 거북 표현식
  • 3d 입체 변별 과제
  • 거북 전략
  • 공간 인지 전략
  • 아이트래커
  • 체화
  • 회전 전략
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
83 0

0.0%

' 3D 입체 변별 과제에서 공간 인지 전략의 유형과 역할: 체화된 3D 거북 표현식과 전략을 중심으로' 의 참고문헌

  • 화이트헤드의 수학이란 무엇인가. 오채환 역
    Whitehead, A. N. 궁리 [2009]
  • 박사
    행동관계의 조절이 공간정보의 지각과 활용에 미치는 효과
    김기남 서울대학교 대학원 교육학 박사학위논문 [2013]
  • 한국교육심리학회. 『교육심리학용어사전』
    학지사 [2000]
  • 초등학교 7차 교육과정
    교육부 서울: 대한교과서 주식회사 [1997]
  • 인지심리학. 민윤기 역
    Matlin, M. W. 서울: 박학사 [2007]
  • 인지과학 개론: 2011
    이정모 http://blog.naver.com/metapsy/40139099560 [2011]
  • 어떻게 문제를 풀 것인가?: 수학적 사고 방법. 우정호 역
    Polya 교우사 [2008]
  • 쌓기나무 지도를 위한 부분제거법의 적용
    강종표 장혜원 대 한수학교육학회지 수학교육학연구, 19(3), 425-441 [2009]
  • 수학 학습에서의 표현 및 표상에 관한 연구: 표상 모델 개발 을 중심으로
    장혜원 서울대학교 대학원 교육학 박사학위논문 [1997]
  • 서울대학교 교육연구소.,『교육학용어사전』
    하우동설 [1995]
  • 불확실한 상황에서 의 판단: 추단법과 편향. 이영애 역
    Kahneman, D. Slovic, P. Tversky, A 서울: 아카넷 [2001]
  • 뇌과학을 넘어서: 인지과학과 체화된 인지로. 뇌과학 경 계를 넘다. 신경 인문학 연구회 저. 홍성욱, 장대익 편
    이정모 바다출판 사 [2012]
  • 교육인적자원부 수학 6-1
    두산동아(주) [2012]
  • 과학과 근대세계. 김준섭 역
    Whitehead, A. N. 을유문화사 [1993]
  • 공간 시각화 과제에 체화된 거북스킴 적 용에 관한 연구
    송민호 이지윤 조한혁 한국수학교육학회지시리즈A: 수학교육, 52(2), 191-201 [2013]
  • ‘컴퓨터와 수학교육’ 학습-지도 환경에 관한 연구
    김화경 서울대학교 대학원 교육학 박사학위논문 [2006]
  • Zacks, J. M. & Tversky, B. (2005) Multiple Systems for Spatial Imagery: Transformations of Objects and Bodies, Spatial Cognition & Computation: An Interdisciplinary Journal, 5(4), 271-306.
  • Yerushalmy, M & Chazan, D. (2002). Flux in school algebra: curricular change, graphing technology, and research on student learning and teacher knowledge. In L. D. English(Ed.), Handbook of international research in mathematics education, 725-755.
  • Wraga, M., Shephard, J. M., Church, J. A., Inati, S. & Kosslyn, S. M. (2005). Imagined rotations of self versus objects: an fMRI study. Neuropsychologia, 43, 1351?1361.
  • Wilson, M. (2010). The re-tooled mind: how culture re-engineers cognition. Social, Cognitive, and Affective Neuroscience, 5, 180-187.
  • Wilson, M. (2002). Six views of embodied cognition. Psychonomic Bulletin & Review, 9(4), 625-636.
  • Wilensky, U. (1999). NetLogo (and NetLogo User Manual), Center for Connected Learning and Computer- Based Modeling, Northwestern University. http://ccl.northwestern.edu/netlogo/
  • Vygotsky, L. S. (1978). Mind and society: The development of higher psychological processes. Cambridge: Harvard University Press.
  • Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three dimensional spatial visualization. Perceptual and Motor Skills, 47, 599?604.
  • Uchikawa, K., & Shinoda, H. (1996). Influence of basic color categories on color memory discrimination. Color research and application, 21, 430?439.
  • Thurstone, L. L. (1950). Some primary abilities in visual thinking (Rep. no. 59). Chicago, IL: Psychometric Laboratory, University of Chicago.
  • Thurstone, L. L. (1944). A factorial study of perception. Chicago: University of Chicago Press,
  • Thurstone, L. L. (1938). Primary Mental Abilities, Psychometric Monographs, 1-121.
  • Stieff, M., Ryu, M., Dixon, B., & Hegarty, M. (2012). The role of spatial ability and strategy preference during spatial problem solving in organic chemistry. Journal of Chemical Education, 89, 854-859.
  • Stieff, M., Dixon, B. L., Ryu, M., Kumi, B. C., & Hegarty, M. (2013). Strategy Training Eliminates Sex Differences in Spatial Problem Solving in a STEM Domain. Journal of Cognitive Psychology, 25(2), 220-228
  • Stieff, M. (2007). Mental rotation and diagrammatic reasoning in science. Learning and Instruction, 17, 219-234.
  • Stieff, M. (2005). Teaching and learning with three dimensional representations. John K. Gibert(ed.), Visualization in Science Education, 93-118. 2005 Springer. Printed in the Netherlands.
  • Soylu, F., Brady, C., Holbert, N., Wilensky, U. (2014) The thinking hand: Embodiment of tool use, social cognition and metaphorical thinking and implications for learning design. Paper presented at the AERA Annual Meeting (SIG: Brain, Neurosciences, and Education), Philadelphia, PA: April, 2014.
  • Soylu, F. (2011). Mathematical Cognition as Embodied Simulation. Proceedings of the 33rd Annual Conference of the Cognitive Science Society.
  • Shiina, K., Saito, T. & Suzuki, K. (1997). Analysis of Problem Solving Process of a Mental Rotations Test-Performance in Shepard-Metzler Tasks. Journal for Geometry and Graphics , 1(2), 185-193.
  • Shiina, K. and Suzuki, K. (1999). Design of Modified Mental Rotations Test and its Error Analysis. Journal for Geometry and Graphics, 3(2), 211-218.
  • Shephard, R. N. & Metzler, J. (1971). Mental Rotation of Three-Dimensional Objects. Science, 171, 701-703.
  • Sharma, N., Jones, P. S., Carpenter, T. A. & Baron, J. C. (2008). Mapping the involvement of BA 4a and 4p during motor imagery. NeuroImage, 41, 92?99.
  • Segal, A., Black, J., & Tversky, B. (2010). Do gestural interfaces promote thinking? Congruent gestures promote performance in math. Paper presented at 51st Annual meeting of Psychonomic Society Conference. St. Louis, Missouri.
  • Schwartz, D. L. & Heise, J. (2006). Spatial Representations and Imagery in Learning. Handbook of the Learning Sciences. K. Sawyer (Ed.), Cambridge University Press.
  • Schwartz, D. L. & Black, J. B. (1996). Shuttling between depictive models and abstract rules: Induction and fallback. Cognitive Science, 20, 457?497.
  • Schultz, K. (1991). The contribution of solution strategy to spatial performance. Canadian Journal of Psychology, 45, 474 ? 491.
  • Rizzolatti, G., & Craighero. (2004). The Mirror-Neuron System. Annu. Rev. Neurosci, 27, 169-192
  • Resnick, M. (1992). Beyond the centralized mindset: explorations in massively-paraller microworlds. Doctoral dissertation, Massachusetts Institute of Technology.
  • Rayner, K. (2009). Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62 (8), 1457?1506.
  • Rayner, K. (1978). Eye movements in reading and informationprocessing. Psychological Bulletin, 85, 618-660.
  • Radford, L. (2002) The seen, the spoken and the written: a semiotic approach to the problem of objectification of mathematical knowledge, For the Learning of Mathematics , 22(2), 14?23.
  • Presmeg, N. C. (1992). Prototypes, Metaphors, Metonymies and Imaginative Rationality in High School Mathematics, Educational Studies in Mathematics, 23, 595-610.
  • Piaget, J. (1969). The Mechanisms of Perception. New York: Basic Books.
  • Piaget, J. & Inhelder, B. (1967). The child's conception of space. The coordination of perspectives, Cahp. 8. pp.209-246. New York: Norton & Co.
  • Pezaris, E., & Casey, M. B. (1991). Girls who use “masculine” problem-solving strategies on a spatial task: Proposed genetic and environmental factors. Brain and Cognition, 17, 1?22.
  • Peters, M. & Battista, C. (2008). Applications of mental rotation figures of the shephard and Metzler type and description of a mental rotation stimulus library. Brain and Cognition, 66, 260-264.
  • Papert, S. (1980). Mindstorms: Children, computers, and powerful ideas. Cambridge, Massachusetts: Perseus Publishing.
  • Paivio, A. (1971). Imagery and Verbal Processes. Holt, Rinehart and New York, Winston.
  • Noss, R. & Hoyles, C. (1996). Windows on mathematical meanings: Learning cultures and computers (Vol. 17). Springer.
  • Norman, D. A. (1991). Cognitive artifacts . In Carroll, J., M. (Ed.), Designing interaction. Cambridge University Press: Cambridge.
  • Norman, D. A. (1990). The Design of Everyday Things, Doubleday, New York.
  • National Council of Teachers of Mathematics. (2000) Principles and standards for school mathematics, VA: NCTM. Nemirovsky, R. (2003). Three conjectures concerning the relationship between body activity and understanding mathematics. In Pateman, N., Dougherty, B., & Zilliox, J. (Eds.), Proc. 27th Conf. of the Int. Group for the Psychology of Mathematics Education (Vol. 1, pp. 105-109). Honolulu, Hawaii.
  • Munzert, J., Lorey, B., and Zentfraf, K. (2009). Cognitive motor processes: The role of motor imagery in the study of motor representations. Brain research reviews, 60, 306-326.
  • Morrow, D. G., Greenspan, S. L., & Bower, G. H. (1987). Accessibility and situation models in narrative comprehension. Journal of Memory and Language, 26, 165-187.
  • Moreau. D. (2012). The role of motor processes in three-dimensional mental rotation: Shaping cognitive processing via sensorimotor experience. Learning and Individual Differences, 22, 354-359.
  • Money, J., Alexander, D., & Walker Jr., H. T. (1965). A standardized road-map test of direction sense. Baltimore: Johns Hopkins Press.
  • Michaelides, M. P. (2002). Students' Solution Strategies in Spatial Rotation Tasks. Paper is the result of a Master's Thesis, University of Cambridge.
  • McGee, M. G. (1979). Human spatial abilities: Psychometric studies and environmental, genetic, hormonal, and neurological influences. Psychological Bulletin, 86, 889 ? 918.
  • Mayer, R. E. & Fay, A. L. (1987). A Chain of Cognitive Changes With Learning to Program in Logo. Journal of Educational psychology, 79(3), 269-279.
  • Lohman, D. F. (1979). Spatial ability: Review and re-analysis of the correlational literature. Stanford University Technical Report No. 8.
  • Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development 56, 1479 ?1498.
  • Lehrer, R. & Littlefield, J. (1993). Relationships Among Cognitive Components in Logo Learning and Transfer. Journal of Educational Psychology, 85 (2), 317-330.
  • Lee, L. & Wheler, D. (1987). Algebraic Thinking in High Schol Students: Their Conceptions of Generalization and Justifcation (Research Report). Montreal, Canada: Concordia University, Mathematics Department.
  • Lee, J. Y., Cho, H. H., Song, M. H. & Kim, H. K. (2010). Representation Systems of Building Blocks in Logo-based Microworld. Proceedings of the 1st International Constructionism Conference 2010 held at American University of Paris, Paris, France ; August 16-21, 2010.
  • Lee, J. Y. & Cho, H. H. (2014). Computational Thinking based Mathematical Program for Free Semester System. Journal of the Korean Society of Mathematical Education Series D: Research in Mathematics Education, 18(4), 273?288.
  • Lean, G. A. & Clements, M. A. (1981). Spatial ability, visual imagery and mathematical performance, Educational Studies in Mathematics, 12(1), 1?33.
  • Landriscina, F. (2013). Simulation and Learning: A Model-Centered Approach. Springer.
  • Lakoff, G., & N?nez, R. (2000). Where mathematics comes from: How the embodied mind brings mathematics into being. New York, NY: Basic Books.
  • Lakoff, G. & Johnson, M. (1980). Metaphors we live by. Chicage, IL: University of Chicago Press.
  • Lajoie, S. P. (2003). Individual differences in spatial ability_Developing technologies to increase strategy awareness and skills. Educational Psychologist, 38(2), 115-125.
  • Kozhevnikov, M. & Hegarty, M. (2001). A dissociation between object manipulation spatialability and spatial orientation ability. Memory & Cognition, 29(5), 745-756.
  • Kosslyn, S. M., Ball, T. M. & Reiser, B. J.(1978). Visual Images Preserve Metric Spatial Information: Evidence from Studies of Image Scanning. Journal of Experimental Psychology: Human Perception and Performance, 4(1), 47-60
  • Kosslyn, S. M. (1994) Image and Brain: The Resolution of the Imagery Debate. Cambridge, MA: MIT Press
  • Kessler, K. & Wang, H. (2012). Spatial Perspective Taking is an Embodied Process, but Not for Everyone in the Same Way: Differences Predicted by Sex and Social Skills Score. Spatial Cognition & Computation: An Interdisciplinary Journal, 12, 133-158.
  • Kaltner, S., Riecke, B. E., & Jansen, P. (2014). Embodied mental rotation: a special link between egocentric transformation and the bodily self. Frontiers in Psychology, 5, 505.
  • Johnson-Laird, P. N. (1983). Mental models: Towards a cognitive science of language, inference, and consciousness. Cambridge: Cambridge University Press.
  • Johnson, M. (1987). The body in the mind: The bodily basis of meaning, imagination and reason. Chicago, IL: Chicago University Press.
  • Janssen, A.B. & Geiser, C. (2010). On the relationship between solution strategies in two mental rotation tasks. Learning and Individual Differences, 20, 473-478.
  • Husserl, E. (1931) Ideas. General introduction to pure phenomenology (W. R. Boyce Gibson, trans., 3rd [1958] edn.), London, UK, George Allen and Unwin.
  • Hoyles, C. & K?cheman , D., (2002). Students' Understanding of Logical Implication. Educational Studies in Mathematics, 51(3), 193-23
  • Hong, J. (2009). Designing Animation and Interactivity to Attract Young Players. In Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications 2009 (pp. 36193640). hesapeake, VA: AACE.
  • Hershkowitz, R. (1990). Psychological aspects of learning geometry. In P. Nesher & J. Kilpatrick(eds.), Mathematics and cognition: A Research Synthesis by the International Group for the Psychology of Mathematics Education (pp. 70-95). Cambridge: Cambridge University Press.
  • Hermer, L. & Spelke, S. S. (1994). A geometric process for spatial reorientation in young children. Nature, 370, 57?59.
  • Heil, M. & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes whereas women prefer piecemeal ones? Quarterly Journal of Experimental Psychology, 61, 683?689.
  • Hegarty, M., Stieff, M. & Dixon, B. L. (2013) Cognitive change in mental models with experience in the domain of organic chemistry, Journal of Cognitive Psychology, 25 (2), 220-228.
  • Hegarty, M. (2004). Mechanical reasoning by mental simulation. Trends in Cognitive Sciences, 8, 280?285.
  • Hegarty, M. & Waller, D. (2004). A dissociation between mental rotation and perspective-taking spatial abilities. Intelligence , 32, 171-191.
  • Han, I. S. (2010). Feel, imagine and learn!-Haptic augmented simulation and embodied instruction in physics learning. Dissertation of Columbia University.
  • Guilford, J. P., & Zimmerman, W. S. (1948). The Guilford-Zimmerman Aptitude Survey. Journal of Applied Psychology, 32(1), 24-35.
  • Guilford, J. P. & Lacey, J. I. (1947). Printed Classification Tests, A.A.F. (Aviation Psychological Progress Research Rep. No. 5). Washington, D.C.: U.S. Government Printing Office, 1947.
  • Grande, J. D. (1990). Spatial sense. Arithmetic Teacher, 73(6), 14-20.
  • Grande, J. D. (1987). Spatial perception and primary geometry. In M. M. Lindquist & A. P. Shults (Eds.), Leaning and teaching geometry (K-12), 1987 yearbook (pp. 126-135). Reston, VA: The National Council of Teachers of Mathematics, Inc.
  • Gorgori?, N. (1998). Exploring the functionality of visual and non-visual strategies in solving rotation problems. Educational Studies in Mathematics, 35, 207?231.
  • Gordon, P. (2004). Numerical cognition without words: Evidence from Amazonia. Science, 306, 496?499.
  • Gibson, J. J. (1986). The Ecological Approach to Visual Perception. Lawrence Erlbaum Associates, Hillsdale, N. J. Glenberg, A. M., Gutierrez, T., Levin, J. R., Japuntich, S. & Kaschak, M. P. (2004) Activity and Imagined Activity Can Enhance Young Children’s Reading Comprehension. Journal of Educational Psychology, 96 (3), 424436.
  • Gibson, J. J. & Gibson, E. J. (1955). Perceptual learning: Differentiation or enrichment. Psychological Review, 62 , 32-41.
  • Gibbs, R. W. (2006). Metaphor interpretation as embodied simulation. Mind and Language, 21(3), 434-458.
  • Gentner, D. (1988). Metaphor as structure mapping: the relational shift. Child Development, 59 , 47?59.
  • Gentner, D. & Loewenstein, J. (2002). Relational language and relational thought. In E. Amsel & J.P. Byrnes (Eds.), Language, literacy, and cognitive development: The development of consequences of symbolic communication (pp. 87?120). Mahwah, NJ: Lawrence Erlbaum Associates.
  • Gallese, V. & Lakoff, G. (2005) The Brain's concepts: the role of the Sensory-motor system in conceptual knowledge. Cognitive Neuropsychology, 22(3-4), 455-479.
  • Gal, H. & Linchevski, L. (2010). To see or not to see: analyzing difficulties in geometry from the perspective of visual perception. Educational Studies in Mathematics, 74, 163? 183.
  • Gabbard, C. (2012). The role of mental simulation in embodied cognition. Early Child Development and Care, 1?8.
  • Frecdman, R.J., & Rovegno, L. (1981). Ocular dominance, cognitive strategy, and sex differences in spatial ability. Perceptual and Motor Skills, 52, 651 654.
  • Frank, M. C., Everett, D. L., Fedorenko, E. & Gibson, E. (2008). Number as a cognitive technology: evidence from Pirah? language and cognition. Cognition, 108, 819 ?824.
  • Fadjo, C. L., Lu, M.T. & Black, J. B. (2009). Instructional Embodiment and Video Game Programming in an After School Program. In G. Siemens & C. Fulford (Eds.), Proceedings of World Conference on Educational Multimedia, Hypermedia and Telecommunications, 2009 (pp. 4041-4046). Chesapeake, VA: AACE.
  • Fadjo, C. L. (2012). Developing Computational Thinking Through Grounded Embodied Cognition. Doctor's thesis of Philosophy under the Executive Committee of the Graduate School of Arts and Sciences, Columbia University.
  • Evans, V., & Green, M. (2006). Cognitive linguistics. An introduction. Edinburgh: Edinburgh University Press.
  • Ekstrom, R. B., French, J. W. & Harman, H. H. (1976). Manual for Kit of Factor Referenced Cognitive Tests. Princeton, NJ: Educational Testing Service.
  • Cole, M. (1990). Cultural psychology: A once and future discipline? Paper presented at the Nebraska Symposium, 1989.
  • Cochran, K.F., & Whcatley, G.H. (1989). Ability and sex-related differences in cognitive strategics on spatial tasks. The Journal of General Psychology, 116 , 43-55.
  • Clements, D. H., Battista, M. T. & Sarama, J. (2001). Logo and Geometry. Journal for Research in Mathematics Education. Monograph, 10, 1-177.
  • Clements, D. H. (1999). Geometric and spatial thinking in young children. In V. C. Juanita(ed.), Mathematics in the early tears(pp.66-79). Reston, VA: Natioanl Council of Teachers of Mathematics.
  • Clements, D. H. & Battista, M. T. (1990). The Effects of Logo on Children's Conceptualizations of Angle and Polygons. Journal for Research in Mathematics Education, 21 (5), 356-371.
  • Cho, H. H., Song, M. H., Lee, J. Y. & Kim, H. K. (2010). On the Design of Logo-based Educational Microworld Environment. Proceedings of the 1st International Constructionism Conference 2010 held at American University of Paris, Paris, France; August 16-21, 2010.
  • Cho, H. H., Lee, J. Y., Shin, D. J. & Woo, A. S. (2011). MCY-Mentoring Activities by Creating and Communicating Mathematical Objects. Journal of the Korean Society of Mathematical Education Series D: Research in Mathematics Education, 15(2), 141-158.
  • Cho, H. H., Lee, J. Y., Kim, C. H. & Lee, D. H. (2012a). The MCY-Activities: Constructing and Sharing Three Types of Pattern. Proceedings of the Asian Technology Conference in Mathematics, Bangkok, Thailand. December 16-20, 2012.
  • Cho, H. H., Lee, J. Y. & Song, M. H. (2013). Design of a Logo-based Learning Environment for Pattern Generalization. This paper is presented in the EdMedia 2013 Conference. Victoria, Canada.
  • Cho, H. H., Lee, J. Y. & Song, M. H. (2012c). Construction and design activities through Logo-based 3D microworld. Proceedings of the 2nd International Constructionism Conference 2012 held at Athens, Greece; August 21-25, 2012(pp.565-569). Athens, Greece.
  • Cho, H. H., Lee, J. Y. & Lee, H. M. (2012b). The Mediation of Embodied Symbol on Combinatorial Thinking. Journal of the Korean Society of Mathematical Education Series D: Research in Mathematics Education, 16(1), 79-90.
  • Cho, H. H. & Lee, J. Y. (2014). 3D turtle representation system and mental rotation using 3D turtle perspective. Proceedings of the 3rd International Constructionism Conference 2014 held at Vienna University of Technology Electrotechnica Institute, Vienna, Austria; August 19-23, 2014(pp.135-144). Vienna, Austria.
  • Caissie, A. F., Vigneau, F. and Bors, D. A. (2009). What does the Mental Rotation Test Measure? An Analysis of Item Difficulty and Item Characteristics. The Open Psychology Journal, 2, 94-102.
  • Buccino, G., Riggio, L., Melli, G., Binkofski, F., Gallese, V., & Rizzolatti, G. (2005). Listening to action-related sentences modulates the activity of the motor system: A combined TMS and behavioral study. Cognitive Brain Research, 24(3), 355?363.
  • Botzer, G. & Yerushalmy, M. (2008). Embodied Semiotic Activities and Their Role in the Construction of Mathematical Meaning of Motion Graphs. International Journal of Computers for Mathematical Learning, 13, 111? 134.
  • Borghi, A. M. and Cimatti, F. (2010). Embodied cognition and beyond: Acting and sensing the body. Neuropsychologia, 48, 763-773.
  • Borghi, A. M. (2005). Object concepts and action. In D. Pecher & R. A. Zwaan (Eds.), Grounding cognition: The role of perception and action in memory, language, and thinking (pp. 8-34). Cambridge: Cambridge University Press.
  • Bishop, A. J. (1983), ‘Space and Geometry’, in R. Lesh, M. Landau (eds.), Acquisition of Mathematics Concepts and Processes. Academic Press Inc., Orlando, Florida, USA, 175 ?203.
  • Bishop, A. J. (1980). Spatial abilities and mathematics education-a review. Educational Studies in Mathematics, 11, 257-269.
  • Ben-Chaim, D., Lappan, G. & Houang, R. T. (1989). Adolescents' ability to communicate spatial information: analyzing and effecting students' performance. Educational Studies in Mathematics, 20, 121-146.
  • Barsalou, L. W. (2008). Grounded cognition. Annual Review of Psychology, 59, 617?45.
  • Barsalou, L. W. (1999). Perceptual symbol systems. Behavioral and Brain Sciences, 22 , 577-660.
  • Anderson, J. R. (1995). Cognitive psychology and its implications (4th ed.). New York: Freeman.
  • Amthauer, R. (1953). Intelligenz-Struktur-Test (IST) [Intelligence Structure Test IST]. G?ttingen, Germany: Hogrefe. Amthauer, R. (1970). Intelligenz-Struktur-Test (IST-70) [Intelligence Structure Test IST-70]. G?ttingen, Germany: Hogrefe.
  • Amorim, M. A. & Isableu, B. (2006). Embodied Spatial Transformations: “Body Analogy” for the Mental Rotation of Objects. Journal of Experimental Psychology: General, 135(3), 327?347.
  • Allen, M. J. & Hogeland, R. (1978). Spatial problem-solving strategies as functions of sex. Perceptual and Motor Skills, 47(2), 348-350.
  • Adolph, K. E. (1997). Learning in the development of infant locomotion. Monographs of the Society for Research in Child Development, 62 , 1-140.
  • Ackermann, E. K. (2004). Constructing knowledge and transforming the world. In M. Tokoro & L. Steels(Eds.), A learning zone of one’s own: Sharing representations and flow in collaborative learning environments, Amsterdam: IOS Press.
  • Ackermann, E. K. (2001). Piaget’s constructivism, Papert’s constructionism: What’s the difference. Future of learning group publication, 5(3), p. 438.
  • Abrahamson, D. (2009). Embodied design: constructing means for constructing meaning. Educational Studies in Mathematics, 70, 27-47.
  • Abelson, H. & diSessa, A. (1980). Turtle geometry. Cambridge. MA: MIT Press.
  • ?교육과학기술부 수학 2-1
    두산동아(주) [2010]