박사

교질상 영가철 및 철 (산수)산화물의 수환경 내 거동특성과 비소 흡착표면특성 연구

이우춘 2015년
논문상세정보
' 교질상 영가철 및 철 (산수)산화물의 수환경 내 거동특성과 비소 흡착표면특성 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 비소
  • 영가철
  • 철 (산수)산화물
  • 콜로이드
  • 표면특성
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
95 0

0.0%

' 교질상 영가철 및 철 (산수)산화물의 수환경 내 거동특성과 비소 흡착표면특성 연구' 의 참고문헌

  • 황산염처리 산화철피 복모래의 비소 흡착능 평가 연구. 2006년 자원환경지질학회 춘계 학술발표 회
  • 침철석과 비소의 흡착반응
    김순오 이우춘 정현수 조현구 한국광물 학회지. 22(3) : 177-189 [2009]
  • 영가철을 이용한 광미 용출액으로부터 비소 제거에 관한 연구. 년 대한지질학회 추계학술회
    김순오 김인선 정영일 한국지질자원연구원. 149 [2006]
  • 영가철(Zerovalent Iron)을 이용한 수용액 중 비소(Ⅴ)의 불용화
    양재의 옥용식 유경열 한국환경농학회지. 26 : 197-203 [2007]
  • 수용액 중 영가 철의 비소흡착 및 반응기작 규명
    양재의 옥용식 유경열 한국토양비료학회지. 39 : 157-162 [2006]
  • 비소와 영가철 및 철(수)산화 물과의 표면반응에 대한 X선 흡수분광 예비연구. 2007년 한국광물학회?한 국암석학회 공동학술발표회
  • 무산소 조건에서의 Fe(Ⅱ)와 As(Ⅴ)의 반응에 관한 연구
    김선준 이상훈 전병훈 정우식 정형근 최재영 자원환경지질. 42 : 487-494 [2009]
  • 나노 크기 적철석 입자 피복 모래를 이용한 비소 3가와 비소 5가의 제거
    고일원 김경웅 김주용 이상우 이철효 한국지하수토양환경학회지. 9(1) : 63-69
  • da Silva, B. F., P rez, S., Gardinalli, P., Singhal, R. K., Mozeto, A. A. and Barcel , D. 2011. Analytical chemistry of metallic nanoparticles in natural environments. Trends Anal. Chem. 30(3) : 528-540.
  • Zhang, Z., Kong, F., Vardhanabhuti, B., Mustapha, A. and Lin, M. 2012. Detection of engineered silver nanoparticle contamination in pears. J . Agric. Food Chem. 60(43) : 10762-10767.
  • Zhang, Y., Chen, Y., Westerhoff, P. and Crittenden, J. 2009. Impact of natural organic matter and divalent cations on the stability of aqueous nanoparticles. Water Res. 43(17) : 4249-4257.
  • Zhang, Y., Chen, Y. Westerhoff, P., Hristovski, K. and Crittenden, J. C. 2008. Stability of commercial metal oxide nanoparticles in water. Water Res. 42(8-9) : 2204-2212.
  • Zhang, L. D. and Fang, M. 2010. Nanomaterials in pollution trace detection and environmental improvement. Nano Today. 5(2) : 128-42.
  • Yuan, C. and Chiang, T. S. 2007. The mechanisms of arsenic removal from soil by electrokinetic process coupled with iron permeable reaction barrier. Chemosphere. 67 : 1533-1542.
  • Yates, D., Levine, S. and Healy, T. 1974. Site-binding model of the electrical double layer at the oxide/water interface. J . Chem. Soc., Faraday Trans. 1. 70 : 1807-1818.
  • Yang, L., Dadwhal, M., Shahrivari, Z., Ostwal, M. M., Liu, P. K. T., Sahimi, M. and Tsotsis, T. T. 2006. Adsorption of arsenic on layered double hydroxides: Effect of the particle size. Ind. Eng. Chem. Res. 45, No. 13, 4742-4751.
  • Xu, P., Zeng, G. M., Huang, D. L., Feng, C. L., Hu, S., Zhao, M. H., Lai, C,, Wei, Z., Chao, H., Xie, G. X. and Liu, Z. F. 2012. Use of iron oxide nanomaterials in wastewater treatment: A review. Sci. Total Environ. 424 : 1-10.
  • Wu, W. He, Q. and Jiang, C. 2008. Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies. Nanoscale Res. Lett. 3 : 397-415.
  • Wu, H., Yin, J., Wamer, W. G., Zeng, M. and Lo, Y. M. 2014. Reactive oxygen species-related activities of nano-iron metal and nano-iron oxides. J . food drug anal. 22(1) : 86-94.
  • Wilkinson, K. J., Joz-Rolland, A. and Buffle, J. 1997. Different role of pedogenic fulvic acids and aquagenic biopolymers on colloid aggregation and stability in freshwaters. Limnol. Oceanogr. 42 : 1714-1724.
  • Wilkin, R. T., Acree, S. D., Ross, R. R., Beak, D. G. and Lee, T. R. 2009. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies. J . Contam. Hydrol. 106 : 1-14.
  • Wilkie, J. A. and Hering, J. G. 1996. Adsorption of arsenic onto hydrous ferric oxide: effects of adsorbate/adsorbent ratios and co-occurring solutes. Colloids Surf., A. 107 : 97-110.
  • Westall, J. 1986. Reactions at the oxide?solution interface: Chemical and electrostatic models. In: Davis, J. and Hayes, K. (Eds.) Geochemical processes at mineral surfaces. Washington DC. 54-78.
  • Washington, C. 1992. Particle Size Analysis In Pharmaceutics And Other Industries: Theory And Practice. CRC Press. England.
  • Wang, S. and Mulligan, C. N. 2006. Occurrence of arsenic contamination in Canada: Soures, behavior and distribution. Sci. Total Environ. 366 : 701-721.
  • Wang, L., Ma, W., Xu, L., Chen, X., Zhu, Y., Xu, C. and Kotov, N. A., 2010. Nanoparticle-based environmental sensors. Mater. Sci. Eng., R. 70(3-6) : 265-274.
  • Wang, C. and Zhang, W. 1997. Synthesizing nanoscale iron particles for rapid and complete dechlorination of TCE and PCBs. Environ. Sci. Technol. 31 : 2154-2156.
  • Vlassopoulos, D., Rivera, N., O'Day, P. A., Rafferty, M. T. and Andrews, C. B. 2005. Arsenic removal by zero-valent iron: a field study of rates, mechanisms, and long term performance. In: O'Day, P.A., et al. (Ed.), Advances in Arsenic Research: Integration of Experimental and Observational Studies and Implications for Migration. Am. Chem. Soc. Symp. Series. 915 : 25.
  • Vidal-Vidal, J., Rivas, J. and Lo pez-Quintela, M. A. 2006. Synthesis of monodisperse maghemite nanoparticles by the microemulsion method. Colloid Surf. A. 288(1-3) : 44-51.
  • Verwey, E. J. W. and Overbeek, J. T. G. 1948. Theory of the Stability of Lyophobic Colloids. Elsevier publishing company INC. Amserdam.
  • Verwey, E. J. W. 1947. Theory of the stability of lyophobic colloids. J . Phys. Chem. 51(3) : 631-636.
  • Van der Giessen, A. A. 1966. The structure of iron(III) oxide-hydrate gels. J . inog. nucl. Chem. 28 : 2155-2159
  • Van Hyning, D. L., Klemperer, W. G. and Zukoski, C. F. 2001. Characterization of Colloidal Stability during Precipitation Reactions. Langmuir, 17(11) : 3120?3127.
  • US Environmental Protection Agency (EPA). 2007. Nanotechnology White Paper , EPA 100/B-07/001, EPA, Washington DC, USA.
  • Tuutij rvi, T., Lub, J., Sillanp , M. and Chenb, G. 2009. As(V) adsorption on maghemite nanoparticles. J . Hazard. Mater. 166 : 1415-1420.
  • Tipping, E. and Higgins, D. C. 1982. The effect of adsorbed humic substances on the colloid stability of haematite particles. Colloids Surf. 5(2) : 85-92.
  • Tiller, C. L. and O’Melia, C. R. 1993. Natural organic matter and colloidal stability: models and measurements. Colloids Surf. A Physicochem. Eng. Asp. 73(0) : 89-102.
  • Tanboonchuy, V., Hsu, J. C., Grisdanurak, N. and Liao, C. H. 2010. Arsenate removal by nano zero-valent iron in the gas bubbling system. Wold Acade. Sci. Eng. Technol. 4(5) : 225-127.
  • Sylvester, P., Westerhoff, P., M ller, T., Badruzzaman, M. and Boyd, O. 2007. A hybrid sorbent utilizing nanoparticles of hydrous iron oxide for arsenic removal from drinking water. Environ. Eng. Sci. 24 : 105-112.
  • Su, C. and Puls, R.W. 2008. Arsenate and arsenite sorption on magnetite: relations to groundwater arsenic treatment using zerovalent iron and natural attenuation. Water, Air, Soil Pollut. 193 : 65-78.
  • Su, C. and Puls, R. W. 2004. Significance of iron(II,III) hydroxycarbonate green rust in arsenic remediation using zerovalent iron in laboratory column tests. Environ. Sci. Technol. 38(19) 5224-5231.
  • Su, C. and Puls, R. W. 2003. In situ remediation of arsenic in simulated groundwater using zerovalent iron: laboratory column tests on combined effects of phosphate and silicate. Environ. Sci. Technol. 37 : 2582-2587.
  • Su, C. and Puls, R. W. 2001. Arsenate and arsenite removal by zerovalent iron: kinetics, redox transformation, and implications for in situ groundwater remediation. Environ. Sci. Technol. 35 : 1487-1492.
  • Stumpf, S., Stumpf, T., Dardenne, K., Hennig, C., Foerstendorf, H., Klenze, R. and Fangh nel, T. 2006. Sorption of Am(III) onto 6-line-ferrihydrite and its alteration products: investigations by EXAFS. Environ. Sci. Technol. 40(11) : 3522-3528.
  • Stumm, W., Huang, C. and Jenkins, S. 1970. Specific chemical interaction affecting the stability of dispersed systems. Croat. Chemica. Acta. 42 : 223-245.
  • Stumm, W. 1992. Chemistry of the solid-water interface. John Wiley & Sons, New York, USA.
  • Stone, V., Nowack, B., Baun, A., van den Brink, N., von der Kammer, F., Dusinska, M., Handyg, R., Hankinh, S., Hassell vi, M., Jonerj, E. and Fernandesa, T. F. 2010 Nanomaterials for environmental studies : classification, reference material issues, and strategies for physicochemical characterisation. Sci. Total Environ. 408(7) : 1745-54.
  • Stevenson, F. J. 1982. Humus chemistry genesis, composition, reactions. Willey Interscience. New York.
  • Stephan, C. and Hineman, A. 2014. Iron Nanoparticles by SP-ICP-MS: Overcoming Spectral Interferences Using Universal Cell Technology. PerkinElmer, Inc. Shelton, CT.
  • Stebounova, L. V., Adamcakova-Dodd, A., Kim, J. S., Park, H., O'Shaughnessy, P. T., Grassian, V. H. and Thorne, P. S. 2011, Nanosilver induces minimal lung toxicity or inflammation in a subacute murine inhalation model. Part. Fibre. Toxicol. 8(1) : 1-12.
  • Stachowicz, M., Hiemstra, T. and van Riemsdijk, W.H. 2006. Surface speciation of As(III) and As(V) in relation to charge distribution, J . Colloid Int. Sci. 302 : 62-75.
  • Stachowicz, M. Hiemstra, T. and van Riemsdijk, W. H. 2006. Surface speciation of As(III) and As(V) in relation to charge distribution. J . Colloid Interface Sci. 302 : 62?75.
  • Sposito, G., 1980. Derivation of the freundlich equation for ion exchange reactions in soils. J . soil Sci. Soc. Am. 44 : 652-654.
  • Sparks, D. L. 2003. Environmental Soil Chemistry, pp. 207-244, Academic Press, San Diega, CA.
  • Sparks, D. L. 1999. Kinetics and mechanisms of chemical reactions at the soil/mineral water interface. In: Soil Physical Chemistry, 2nd ed. (D. L. Sparks, ed.), CRC Press, Boca Raton, FL. 135-191.
  • Solans, C., Izquierdo, P., Nolla, J., Azemar, N. and Garcia-Celma, M. J. 2005. Nano-emulsions. Curr. Opin. Colloid Interface Sci. 10(3-4) : 102-110.
  • Smedley, P. L. and Kinniburgh, D. G. 2002. A review of the source, behaviour and distribution of arsenic in natural waters. Appl. Geochem. 17 : 517-568.
  • Singh, U. and Uehara, G. 1998. Electrochemistry of the double layer: Principles and applications to soils. In: Sparks, D.L. (ed.), Soil physical chemistry, CRC Press, Boca Raton, Florida, USA : 1-56.
  • Siebentritt, M., Volovitch, P., Ogle, K. and Lef vre, G. 2014. Surface potential of hematite particles in high concentration electrolytes: Electroacoustic measurements and suspension stability. Colloids Surf. A Physicochem. Eng. Asp. 443 : 338-344
  • Shipley, H. J., Yean, S., Kan, A. T. and Tomson, M. B. 2009. A sorption kinetics model for arsenic adsorption to magnetite nanoparticles. Environ. Sci. Pollut. Res. 17(5) : 1053-1062.
  • Schwertmann, U. and Cornell, R. M. 2000. Iron oxides in the laboratory: preparation and characterization. Wiley-VCH Publishers, New York. USA. : 489-493.
  • Schultr, M. F., Benjamin, M. M. and Ferguson. J. F. 1987. Adsorption and desorption of metals on ferrihydrite: reversibility of the reaction and sorption properties of the regenerated solid. Environ. Sci. Technol. 21 : 863-869.
  • Schindler, P. and Kamber, H. 1968. Die Aciditat von Silanolgruppen. Helv. Chim. Acta. 51 : 1781-1786.
  • Schindler, P. and Gamsj ger, H. 1972. Acid?base reactions of the TiO2 (Anatase)?water interface and the point of zero charge of TiO2 suspensions. Kolloid-Zeitschrift und Zeitschrift f r Polymere. 250(7) : 759-763.
  • Schimpf, M., Caldwell, K. and Giddings, J. C. 2000. Field-flow fractionation handbook. John Wiley & Sons Inc. New York.
  • Sasaki, K., Takatsugi, K., Hirajima, T., Kozai, N., Ohnuki, T. and Tuovinen, O. H. 2009. Bioleaching of Enargite by Arsenic-torelant Acidithiobacillus ferrooxidans, Adv. Mater. Res. 71-73 : 485-488.
  • Ryman-Rasmussen, J. P., Cesta, M. F., Brody, A. R., Shipley-Phillips, J. K., Everitt, J. I., Tewksbury, E. W., Moss, O. R., Wong, B. A., Dodd, D. E., Andersen, M. E. and Bonner, J. C., 2009. Inhaled carbon nanotubes reach the subpleural tissue in mice. Nature Nanotechnology. 4(11) : 747-751.
  • Rodr guez, L., Ruiz, E., Alonso, A. J. and Rinc n, J. 2009. Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. J . Environ. Manage. 90(2) : 1106-1116.
  • Roco, M. C. 2003. Broader societal issues of nanotechnology. J . Nanopart. Res. 5(3-4) : 181-189.
  • Robichaud, C. O., Uyar, A. E., Darby, M.R., Zucker, L.G. and Wiesner, M. R. 2009. Estimates of upper bounds and trends in nano-TiO2 production as a basis for exposure assessment. Environ. Sci Technol. 43 : 4227-4233.
  • Rietra, R. P. J. J., Hiemstra, T. and van Riemsdijk, W. H. 2001. Interaction between calcium and phosphate adsorption on goethite. Environ. Sci. Technol. 35 : 3369-3374.
  • Richard, T. W., Steven, D. A., Randall, R. R., Douglas, G. B. and Tony, R. L. 2009. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 1. Hydrogeochemical studies. J . Contam. Hydrol. 106 : 1-14.
  • Reed, R. B., Higgins, C. P., Westerhoff, P., Tadjikid, S. and Ranville, J. F. 2012. Overcoming challenges in analysis of polydisperse metal-containing nanoparticles by single particle inductively coupled plasma mass spectrometry. J . Anal. At. Spectrom. 27 : 1093-1100.
  • Raven, K. P., Jain, A. and Loeppert, R. H. 1998. Arsenite and arsenate adsorptiononferrihydrite: kinetics, equilibrium,andadsorption envelopes. Environ. Sci. Technol. 32 : 344-349.
  • Randall, S. R., Sherman, D. M. and Ragnarsdottir, K. V. 2001. Sorption of As(V) on green rust (Fe4(II)Fe2(III)(OH)12SO4 3H2O) and lepidocrocite (? FeOOH): surface complexes from EXAFS spectroscopy. Geochim. Cosmochim. Acta. 65 (2001) 1015?1023.
  • Ralph, D. L., David, J. A. S., David, W. B., Laura, E. S., Richard, T. W., David, G. J. and Christopher, J. W. 2009. Treatment of arsenic, heavy metals, and acidity using a mixed ZVI-Compost PRB. Environ. Sci. Techn. 43 : 1970-1976.
  • Ralk, K., Welter, E., Ebert, M. and Dahmke, A. 2005. Removal of arsenic from groundwater by zerovalent iron and the role of sulfide. Environ. Sci. Technol. 39 : 8038-8044.
  • Ralk, K., Birgit, D., Markus, E., Juren, M. and Andreas, D. 2005. Compost-Based permeable reactive barriers for the source treatment of arsenic contaminations in aquifers: Column studies and solid-phase investigations. Environ. Sci. Technol. 39 : 7650-7655.
  • Ponder, S. M., Darab, J. G. and Mallouk, T. E. 2000. Remediation of Cr(VI) and PB(II) aqueous solutions using supported. nanoscale zero-valent iron. Environ. Sci. Technol. 34. : 2564-2569.
  • Poland, C. A., Duffin, R., Kinloch, I., Maynard, A., Wallace, W. A. H., Seaton, A., Stone, V., Brown, S., MacNee, W. and Donaldson, K. 2008. Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study. Nature Nanotechnology. 3(7) : 423-428.
  • Plumlee, G. S. 1998. The environmental geology of mineral deposits. In the environmental geochemistry of mineral deposits Part A: Processes, techniques, and health issues. Reviews in Economic and Environmental Geochemistry(Plumlee, G. S. and Logsdon, M. J. (editors). Geol. 6A : 71-116.
  • Petosa, A. R., Jaisi, D. P., Quevedo, I. R., Elimelech, M. and Tufenkji, N. 2010. Aggregation and deposition of engineered nanomaterials in aquatic environments: Role of physicochemical interactions. Environ. Sci. Technol. 44(17) : 6532-6549.
  • Pena, M., Meng, X., Korfiatis, G. P. and Jing, C. 2006. Adsorption mechanism of arsenic on nanocrystalline titanium dioxide. Environ. Sci. Technol. 40 : 1257?1262.
  • Patel, D., Moon, J. Y., Chang, Y., Kim, T. J. and Lee, G. H. 2008. Poly(d,l-lactide-co-glycolide) coated superparamagnetic iron oxide nanoparticles: Synthesis, characterization and in vivo study as MRI contrast agent. Colloid Surf. A. 313-314 : 91-94.
  • Pang, S. C., Chin, S. F. and Anderson. M. A. 2007. Redox equilibria of iron oxides in aqueous-based magnetite dispersions: Effect of pH and redox potential. J . Colloid Interface Sci. 300(1) : 94-101.
  • Pace, H. E., Rogers, N. J., Jarolimeck, C., Coleman, V. A., Higgins, C. P. and Ranville, J. F. 2011. Determining transport efficiency for the purpose of counting and sizing nanoparticles via single particle inductively coupled plasma mass spectrometry. Anal. Chem. 83(24) : 9361-9369.
  • Pace, H. E., Lesher, E. K. and Ranville, J. F. 2010. Influence of stability on the acute toxicity of CdSe/ZnS nanocrystals to daphnia magna. Environ. Toxicol. Chem. 29(6) : 1338-1344.
  • Ona-Nguema, G., Morin, G., Juillot, F., Calas, G. and Brown, G. E. Jr. 2005. EXAFS analysis of arsenite adsorption onto two-line ferrihydrite, hematite, goethite, and lepidocrocite. Environ. Sci. Technol. 39 : 9147-9155.
  • Nriagu, J. O. 2002. Arsenic poisoning through the ages. In: Frankenberger, Jr. W. T. (ed.), Environmental chemistry of arsenic, Marcel Dekker, Inc. New York. 1-26.
  • Nowack, B., Ranville, J. F., Diamond, S., Gallego-Urrea, J. A., Metcalfe, C., Rose, J., Horne, N., Koelmans, A. A. and Klaine, S. J. 2012. Potential scenarios for nanomaterial release and subsequent alteration in the environment. Environ. Toxicol. Chem. 31(1) : 50-59.
  • Nowack, B., L tzenkirchen, J., Behra, P., and Sigg, L. 1996. Modeling the adsorption of metal?EDTA complexes onto oxides. Environ. Sci. Technol. 30 : 2397-2405.
  • Nowack, B. and Bucheli, T. D. 2007. Occurrence, behavior and effects of nanoparticles in the environment. Environ. Pollut. 150 : 5-22.
  • Novakova, A. A., Lanchinskaya, V. Y., Volkov, A. V., Gendler, T. S., Kiseleva, T. Y., Moskvina, M. A. and Zezina, S. B. 2003. Magnetic properties of polymer nanocomposites containing iron oxide nanoparticles. J . Magn. Magn. Mater. 35 : 258-259.
  • Nikolaidis, N. P., Dobbs, G. M. and Lackovic, J. A. 2003. Arsenic removal by zero-valent iron: field, laboratory and modeling studies. Water Res. 3 : 1417-1425.
  • Nielsen, U. G., Paik, Y., Julmis, K., Schoonen, M. A. A., Reeder, R. J. and Grey, C. P. 2005. Investigating sorpton on iron-oxyhydroxide soil minerals by solid-state NMR spectroscopy: A 6Li MAS NMR study of adsorption and absorption on goethite. J . Phys. Chem. B. 109 : 18310-18315.
  • Nel, A., Xia, T., M dler, L. and Li, N. 2006. Toxic potential of materials at the nanolevel. Science. 311(5761) : 622-627.
  • Navarro, E., Baun, A., Behra, R., Hartmann, N.B., Filser, J., Miao, A.J., Quigg, A., Santschi, P.H. and Sigg, L. 2008. Environmental behavior and ecotoxicity of engineered nanoparticles to algae, plants, and fungi. Ecotoxicology. 17(5) : 372-386.
  • Nassar N. N. 2010. Rapid removal and recovery of Pb(II) from wastewater by magnetic nanoadsorbents. J . Hazard. Mater. 184 : 538-546.
  • Morin, G., Ona-Nguema, G., Wang, Y., Menguy, N., Juillot, F., Proux, O., Guyot, F., Calas, G. and Brown, G. E. Jr. 2008. Extended X-ray absorption fine structure analysis of arsenite and arsenate adsorption on maghemite. Environ. Sci. Technol. 42 : 2361-2366.
  • Morin, G. and Calas, G. 2006. Arsenic in soils, mine tailings, and former industrial sites. Elements. 2 : 97-101.
  • Morales, J., Tirado, J. L. and Valera, C. 1989. Preferntial X-ray line broadening and thermal behaviour of γ?Fe2O3. J . Am. Ceram. Soc. 72 : 1244-1246.
  • Moore M. N. 2006. Do nanoparticles present ecotoxicological risks for the health of the aquatic environment?. Environ. Int. 32(8) : 967-976.
  • Mohan, D., Pittman, J. C. U. 2007. Arsenic removal from water/wastewater using adsorbents: a critical review. J . Hazard. Mater. 142 : 1?53.
  • Mitrano, D. M., Lesher, E. K., Bednar, A., Monserud, J., Higgins, C. P, and Ranville, J. F. 2012 Detecting nanoparticulate silver using single-particle inductively coupled plasma?mass spectrometry. Environ. Toxicol. Chem. 31(1) : 115-121.
  • Mitrano, D. M., Barber, A., Bednar, A., Westerhoff, P., Higgins, C. P. and Ranville, J. F. 2012. Silver nanoparticle characterization using single particle ICP-MS (SP-ICP-MS) and asymmetrical flow field flow fractionation ICP-MS (AF4-ICP-MS). J . Anal. At. Spectrom. 27 : 1131-1142.
  • Mishra, D. and Farrell, J. 2005. Understanding nitrate reactions with zerovalent iron using tafel analysis and electrochemical impedance spectroscopy. Environ. Sci. Technol. 39 : 645-650.
  • Mineral Database. 2014. http:/ /www.webmineral.com.
  • Melitas, N., Wang, J., Conklin, M., O'Day, P. and Farrell, J. 2002. Understanding soluble arsenate removal kinetics by zerovalent iron media. Environ. Sci. Technol. 36 : 2074-2081.
  • McGowan, G. R. and Langhorst, M. A. 1982. Development and application of an integrated, high-speed, computerized hydrodynamic chromatograph. J . Colloid Interface Sci. 89(1) : 94-106.
  • Masue, Y., Loeppert, R. H., and Kramer, T. A. 2007. Arsenate and arsenite adsorption and desorption behavior on coprecipitated aluminum:iron hydroxides. Environ. Sci. Technol. 41 : 837-842.
  • Manning, B. A., Hunt, M., Amrhein, C. and Yarmoff, J. A. 2002. Arsenic(III) andarsenic(V) reactions with zerovalent iron corrosion products. Environ. Sci. Technol. 36 : 5455-5461.
  • Manning, B. A., Fendorf, S. E. and Goldberg, S. 1998. Surface structures and stability of arsenic(III) on goethite: spectroscopic evidence for inner-sphere complexes. Environ. Sci. Technol. 32 : 2383-2388.
  • Manning, B. A. Fendorf, S. E. Bostick, B. and Suarez, D. L. 2002. Arsenic(III) oxidation and arsenic(V) adsorption reactions on synthetic birnessite. Environ. Sci. Technol. 36 : 976?981.
  • Mamindy-Pajany, Y., Hurel, C., Marmier, N. and Rom o, M. 2009. Arsenic adsorption onto hematite and goethite. C. R. Chimie. 12 : 876-881.
  • Mahdavian, A. R. and Mirrahimi, M. A. 2010. Efficient separation of heavy metal cations by anchoring polyacrylic acid on superparamagnetic magnetite nanoparticles through surface modification. Chem. Eng. J . 159(1-3) : 264-271.
  • Machala, J., Zboril, R. and Gedanken, A. 2007. Amorphous iron(III) oxides: a review. J . Phys. Chem. B. 111 : 4003-4018.
  • Lowry, G. V. and Johnson, K. M. 2004. Congener-specific dechlorination of dissolved PCBs by microscale and nanoscale zerovalent iron in a water/methanol solution. Environ. Sci. Technol. 38 : 5208-5216.
  • Liu, Y. G., Zhou, M., Zeng, G. M., Li, X., Xu, W. H. and Fan, T. 2007. Effect of solids concentration on removal of heavy metals from mine tailings via bioleaching. J . Hazard. Mater. 141(1) : 202-208.
  • Liu, J., Yu, S., Yin, Y. and Chao, J. 2011. Methods for separation, identification, characterization and quantification of silver nanoparticles. TrAC, Trends Anal. Chem. 33 : 95-106.
  • Liu, J. and Hurt, R. H. 2010. Ion release kinetics and particle persistence in aqueous nano-silver colloids. Environ. Sci. Technol. 44 : 2169-75.
  • Lindsay, W, L., Vlek, P. L. G. and Chien, S. H. 1989. Phosphate minerals. In Minerals in soil environment.(Dixon, J. B. and Weed, S. B. 2nd editors). Soil Science Society of America, 1089?1130.
  • Lin, M. Y., Lindsay, H. M., Weitz, D. A., Ball, R. C., Klein, R. and Meakin, P. 1989. Universality in colloid aggregation. Nature. 339 : 360-362.
  • Lien, H. and Wilkin, R. T. 2005. High-level arsenite removal from groundwater by zero-valent iron. Chemosphere. 59 : 377-386.
  • Levard, C., Reinsch, B. C., Michel, F. M., Oumahi, C., Lowry, G, V. and Brown, G. E. J. 2011. Sulfidation processes of PVP-Coated silver Nanoparticles in Aqueous Solution: Impact on Dissolution Rate. Environ. Sci. Technol. 2011;45(12):5260?5266.
  • Leupin, O. X. and Hug, S. J. 2005. Oxidation and removal of arsenic(III) from aerated groundwater by filtration through sand and zero-valent iron. Water Res. 39 : 1729-1740.
  • Lee, W. C., Kim, S., Ranville, J. F., Yun, S. and Choi, S. H. 2014. Sequestration of arsenate from aqueous solution using 2-line ferrihydrite: equilibria, kinetics, and X-ray absorption spectroscopic analysis. Environ. Earth Sci. 71 : 3307-3318.
  • Lee, S., Bi, X., Reed, R. B., Ranville, J. F., Herckes, P. and Westerhoff, Paul. 2014. Nanoparticle Size Detection Limits by Single Particle ICP-MS for 40 Elements. Environ. Sci. Technol. 48 : 10291-10300.
  • Lee, M. H. and Jeon, J. H. (2010) Study for the stabilization of arsenic in the farmland soil by using steel making slag and limestone. J . Korean Econ. Environ. Geol. 43 : 305-314.
  • Lee, J., Isobe, T. and Senna, M. 1996. Magnetic properties of ultrafine magnetite particles and their slurries prepared via in-situ precipitation. Colloids Surf. A Physicochem. Eng. Asp. 109 : 121-127.
  • Lackovic, J. A., Nikolaidis, N. P. and Dobbs, G. M. 2000. Inorganic arsenic removal by zero-valent iron. Environ. Eng. Sci. 17 : 29-39.
  • LaConte, L., Nitin, N. and Bao. G. 2005. Magnetic nanoparticle probes. Mater. Today. 8 : 32-38.
  • La Force, M. J., Hansel, C. M. and Fendorf, S. 2000. Arsenic speciation, seansonal transformations, and co-distribution with iron in a mine waste-influenced Palustrine Emergent Wetland. Environ. Sci. Technol. 34 : 3937-3943.
  • Kulthong, K., Srisung, S., Boonpavanitchakul, K., Kangwansupamonkon, W. and Maniratanachote, R. 2010. Determination of silver nanoparticle release from antibacterial fabrics into artificial sweat. Part. Fibre. Toxicol. 7(8) : 1-9.
  • Kraepiel, A. M. L., Keller, K. and Morel, F. M. M. 1998. On the acid-base chemistry of permanently charged minerals. Environ. Sci. Technol. 32 : 2829-2838.
  • Kosmulski, M. 1999. How to handle the ion adsorption data with variable solid-to-liquid ratios by means of FITEQL. Colloids Surf. A Physicochem. Eng. Asp. 149(1-3) : 397-408.
  • Klaine, S. J., Alvarez, P. J. J., Batley, G. E., Fernandes, T. F., Handy, R. D., Lyon, D. Y., Mahendra, S., McLaughlin, M. J. and Lead, J. R. 2008. Nanomaterials in the environment: behavior, fate, bioavailability, and effects. Environ. Toxicol. Chem. 27 : 1825-1851.
  • Kittler S, Greulich C, Diendorf J, Koller M. and Epple M. 2010. Toxicity of Silver nanoparticles increases during storage because of slow dissolution under release of silver ions. Chem. Mater. 22 : 4548?4554.
  • Kim, Y., Kim, C., Choi, I. Rengaraj, S. and Yi, J. 2003. Arsenic Removal using mesoporous alumina prepared via a templating method. Environ. Sci. Technol. 38 : 924?931.
  • Kim, S., Lee, W. C., Cho, H. G., Lee, B., Lee, P. and Choi S. H. 2014. Equilibria, kinetics, and spectroscopic analyses on the uptake of aqueous arsenite by two-line ferrihydrite. Environ. Technol. 35(3) : 251-261.
  • Kim, S. O., Jung, Y. I., Cho, H. G., Park., W. J. and Kim, I. S. 2007. Removal of arsenic from leachate of tailing using laboratory-synthesized zerovalent iron. J . Appl. Biol. Chem. 50 : 6-12.
  • Kim, E. S., Katherine M. T., Benita J. D., Jeffrey R. D. and Igor L. M. 2011. Analyzing Nanomaterial Bioconjugates: A Review of Current and Emerging Purification and Characterization Techniques. Anal. Chem. 83(12) : 4453-4488.
  • Kim, D. H. 2005. Then main contents of mine pollution prevention and reclamation law. J . Korean Soc. Geosyst. Eng. 43(1) : 91-96.
  • Kessler, R. 2011. Engineered nanoparticles in consumer products: understanding a new ingredient. Environ. Health Perspect. 119 : A120-A125.
  • Kanel, S. R., Manning, B., Charlet, L., Choi, H. 2005. Removal of arsenic (III) from groundwater by nanoscale zerovalent iron. Environ. Sci. Technol. 39 : 1291-1298.
  • Kanel, S. R., Greneche, J. M. and Choi, H. 2006. Arsenic(V) Removal from groundwater using nano scale zero-valent iron as a colloidal reactive barrier material. Environ. Sci. Technol. 40 : 2045-2050.
  • K ber, R., Daus, B., Ebert, M., Mattusch, J., Welter, E. and Dahmke, A. 2005. Compost-based permeable reactive barriers for the source treatment of arsenic contamination in aquifers: Column studies and solid phase investigations. Envrion. Sci. Technol. 39 : 7650-7655.
  • Jonsson, C.M., Persson, P., Sj berg, S. and Loring, J.S. 2008. Adsorption of glyphosate on goethite (α-FeOOH): Surface complexation modeling combining spectroscopic and adsorption data. Environ. Sci. Technol. 42, 2464-2469.
  • Jessen, S., Larsen, F., Koch, C. B. and Arvin, E. 2005. Sorption and desorption of arsenic to ferrihydrite in a sand filter. Environ. Sci. Technol. 39 : 8045-8051.
  • Jeong, U., Teng, X., Wang, Y., Yang, H. and Xia, Y. 2007. Superparamagnetic colloids: controlled synthesis and niche applications. Adv. Mater. 19 : 33-60.
  • Jeong, G. Y. and Lee, B. Y. 2003. Secondary mineralogy and microtextures of weathered sulfides and manganoan carbonates in mine waste-rock dumps, with implications for heavy-metal fixation. Am. Mineral. 88 : 1933-1942.
  • Jain, A., Raven, K. P. and Loeppert, R. H. 1999. Arsenite and arsenate adsorption on ferrihydrite: Surface charge reduction and net OH- release stoichiometry. Environ. Sci. Technol. 33 : 1179-1184.
  • International Standard ISO13321. 1996. Methods for Determination of Particle Size Distribution Part 8: Photon Correlation Spectroscopy. International Organisation for Standardisation (ISO).
  • Ill s, E. and Tomb cz, E. 2006. The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J . Colloid Interface Sci. 295(1) : 115-123.
  • Ill s, E. and Tomb cz, E. 2004. The role of variable surface charge and surface complexation in the adsorption of humic acid on magnetite. Colloids Surf. A Physicochem. Eng. Asp. 230(1-3) : 99-109.
  • Huang, S. H., Liao, M. H. and Chen D. H. 2003. Direct binding and characterization of lipase onto magnetic nanoparticles. Biotechnol. Prog. 19 : 1095-1100.
  • Hiemenz, P. C. and Rajagopalan. R. 1997. Principles of colloid and surface chemistry, 3rd edition revised and expanded. Marcel Dekker, New York.
  • Herbelin, A. and Westall, J. 1996. FITEQL?A computer program for determination of chemical equilibrium constants from experimental data version 3.2: User’s manual. Department of Chemistry, Oregon State University, Corvallis, OR, Report 96-01.
  • Heo, C. H., Park, S. W. and Lee, J. H. 2010. Revaluation of ore deposits within the Yeongam district, Cheollanamdo-province: the Eunjeok and Sangeun mines. Econ. .Environ. Geol. 43 : 73-84.
  • He, Y. T., Wan, J. and Tokunaga, T. 2008. Kinetic stability of hematite nanoparticles: the effect of particle sizes. J . Nanopart. Res. 10(2) : 321-332.
  • He, Y. T. and Traina, S. J. 2005. Cr(VI) reduction and immobilization by magnetite under alkaline pH conditions: The role of passivation. Environ. Sci. Technol. 39 : 4499-4504.
  • Hayes, K. and Leckie, J. 1987. Modeling ionic strength effects on cation adsorption at hydrous oxide/solution interfaces. J . Colloid Int. Sci. 115 : 564-572.
  • Hassell v, M., Readman, J. W., Ranville, J. F. and Tiede, K. 2008. Nanoparticle analysis and characterization methodologies in environmental risk assessment of engineered nanoparticles. Ecotoxicology. 17(5) : 344-361.
  • Guzman, K. A. D., Taylor, M. R. and Banfield, J. F. 2006. Environmental risks of nanotechnology: national nanotechnology initiative funding, 2000-2004. Environ. Sci. Technol. 40 : 1401-1407.
  • Guzman, K. A. D., Finnegan, M. P. and Banfield, J. F. 2006. Influence of surface potential on aggregation and transport of titania nanoparticles. Environ. Sci. Technol. 40(24) : 7688-7693.
  • Gupta, V. K., Agarwal, S. and Saleh, T. A. 2011. Chromium removal combining the magnetic properties of iron oxide with adsorption properties of carbon nanotubes. Water Res. 45:2207?2212.
  • Goldberg, S., 2002. Competitive adsorption of arsenate and arsenite onoxides and clay minerals. Soil Sci. Soc. Am. J. 66, 413?421.
  • Goldberg, S. 1986. Chemical modeling of arsenate adsorption on aluminum and iron oxide minerals. Soil Sci. Soc. Am. J . 50 : 1154-l157.
  • Girginova, P. I., Daniel-da-Silva, A. L., Lopes, C. B., Figueira, P., Otero, M., Amaral, V. S., Pereira, E. and Trindade, T. 2010. Silica coated magnetite particles for magnetic removal of Hg2+ from water. J . Colloid Int. Sci. 345(2) : 234-240.
  • Gimenez, J., Martinez, M., de Pablo, J., Rovira, M. and Duro, L. 2007. Arsenic sorption onto natural hematite, magnetite, and goethite. J . Hazard. Mater. 141 : 575-580.
  • Gim nez, J., Mart nez, M., de Pablo, J., Rovira, M. and Duro, L. 2007. Arsenic sorption onto natural hematite, magnetite, and goethite. J . Hazard. Mater. 141 : 575-580.
  • Giasuddin, A. B. M., Kanel, S. R, Choi, H. 2007. Adsorption of humic Acid onto nanoscale zerovalent iron and its effect on arsenic removal. Environ. Sci. Technol. 41 : 2022-2027.
  • Gao, Y. and Mucci, A. 2001. Acid base reactions, phosphate and arsenate complexation, and their competitive adsorption at the surface of goethite in 0.7 M NaCl solution. Geochim. Cosmochim. Acta. 65 : 2361-2378.
  • Fuller, C. C., Davis, J. A. and Waychunas, G. A. 1993. Surface chemistry of ferrihydrite: Part 2. Kinetics of arsenate adsorption and coprecipitation. Geochim. Cosmochim. Acta. 57, 2271-2282.
  • Filius, J. D., Lumsdon, D. G., Meeussen, J. C. L., Hiemstra, T. and van Riemsdijk, W. H. 2000. Adsorption of fulvic acid on goethite. Geochim. Cosmochim. Acta. 64(1) : 51-60.
  • Faure, B., Salazar-Alvarez, G. and Bergstr, L. 2011. Hamaker constants of iron oxide nanoparticles. Langmuir. 27 : 8659-8664.
  • Farrell, J., Wang, J., O’Day, P. and Coklin, M. 2001. Electrochemical and spectroscopic study of arsenate removal from water using zerovalent iron media. Environ. Sci. Technol. 35 : 2026-2032.
  • Farquhar, M. L., Charnock, J. M., Livens, F. R. and Vaughan, D. J. 2002. Mechanisms of arsenic uptake from aqueous solution by interaction with goethite, lepidocrocite, mackinawite, and pyrite: an X-ray absorption spectroscopy study. Environ. Sci. Technol. 36 : 1757-1762.
  • Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S. and Lead J. R. 2011. Silver nanoparticles behaviour and effects in the aquatic environment. Environ. int. 37(2) : 517-531.
  • Eljamal, O., Sasaki, K. and Hirajima, T. 2013. Sorption Kinetic of Arsenate as Water Contaminant on Zero Valent Iron. J . Water Res. Prot. 5 : 563-567
  • Dzombak, D. A. and Morel, F. M. M. 1990. Surface Complexation Modelings Hydrous Ferric Oxide. Wiley: New York.
  • Du, Q., Sun, Z., Forsling, W. and Tang, H. 1997. Acidbase properties of aqueous illite surfaces. J . Colloid Interface Sci. 187, 221-231.
  • Douglas, G. B. and Richard, T. W. 2009. Performance of a zerovalent iron reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies. J . Contam. Hydrol. 2009 : 15-28.
  • Dou, X., Zhang, Y., Zhaob, B., Wu, X., Wu, Z. and Yang, M. 2011. Arsenate adsorption on an Fe?Ce bimetal oxide adsorbent: EXAFS study and surface complexation modeling. Colloids Surf. A Physicochem. Eng. Asp. 379 : 109-115.
  • Dixit, S. and Hering, J. G. 2003. Comparison of arsenic(V) and arsenic(III) sorption onto iron oxide minerals: implications for arsenic mobility. Environ. Sci. Technol. 37 : 4182-4189.
  • Ding, M. de Jong, B. H. W. S. and Roosendaal, S. J. A. 2000. Vredenberg, XPS studies on the electronic structure of bonding between solid and solutes: adsorption of arsenate, chromate, phosphate, Pb2+, and Zn2+ ions on amorphous black ferric oxyhydroxide. Geochim. Cosmochim. Acta 64 : 1209?1219.
  • Dimitrov, D. S. 2006. Interactions of antibody-conjugated nanoparticles with biological surfaces. Colloids Surf. A. 282-283(20) : 8-10.
  • Dickson, D., Liu, G., Li, C., Tachievc, G. and Cai, Y, 2012. Dispersion and stability of bare hematite nanoparticles: effect of dispersion tools, nanoparticle concentration, humic acid and ionic strength. Sci. Total Environ. 419(0) : 170-177.
  • Derjaguin, B., Landau, L. 1941. Theory of the stability of strongly charged lyophobic sols and of the adhesion of strongly charged particles in solutions of electrolytes. Acta Physicochim URSS. 14(6) : 633-662.
  • Davis, A. P. 비소의 적철석 표면 흡 착에 토양 유기물이 미치는 영향: 화학종 모델링과 흡착 기작
    고일원 김경웅 김주용 안주성 자원환경지 질. 38 : 23-31 [2005]
  • Dadwhal, M., Ostwal, M. M., Liu, P. K. T., Sahimi, M. and Tsotsis, T. T. 2009. Adsorption of arsenic on conditioned layered double hydroxides: Column experiments and modeling. Ind. Eng. Chem. Res. 48 (4) 2076-2084.
  • Cumbal, L. and SenGupta, A. K. 2005. Arsenic removal using polymer-supported hydrated iron(III) oxide nanoparticles: role of Donnan membrane effect. Environ. Sci. Technol. 39(17) : 6508?6515.
  • Chuankrerkkul, N. and Sangsuk, S. 2008. Current status of nanotechnology consumer products and nano-safety issues. J . Met. Mat. Min. 18 : 75-79.
  • Christian, P., Von der Kammer, Von der Kammer, F., Baalousha, M. and Hofmann, T. 2008. Nanoparticles : structure, properttes, preparation and behaviour in environmetntal. Ecotoxicology 17 : 326-343.
  • Chorover, J. and Amistadi, M. K. 2001. Reaction of forest floor organic matter at goethite, birnessite and smectite surfaces. Geochim. Cosmochim. Acta. 65(1) : 95-109.
  • Choi, S., Kim V., Chang W. and Kim, E. 2007. The present situation of production and utilization of steel slag in korea and other countries. J . Korea Concr. Inst. 19 : 28-33.
  • Choi, N. C., Kim, S. B., Kim, S. O., Lee, J. W. and Park, J. B. 2012. Removal of arsenate and arsenit from aqueous solution by waste cast iron. J . Environ. Sci. 24(4) : 589-595.
  • Chen, K.L., Mylon, and Elimelech, M. 2006. Aggregation kinetics of alginate-coated hematite nanoparticles in monovalent and divalent electrolytes. Environ. Sci. Technol. 40(5) : 1516-1523.
  • Chen, J., Xiu, Z., Lowry, G. V. and Alvarez, P. J. J. 2011. Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron. Water Res. 45(5) : 1995-2001.
  • Chekli, L., Phuntsho, S., Roy, M., Lombi, E., Donner, E. and Shon, H. K. 2013. Assessing the aggregation behaviour of iron oxide nanoparticles under relevant environmental conditions using a multi-method approach. Water Res. 47(13) : 4585-4599.
  • Carrasco, N., Kretzchmar, R., Pesch, M.-L. and Kraemer, S. M. 2007. Low concentrations of surfactants enhanced siderophore-promoted dissolution of goethite. Environ. Sci. Technol. 37 : 3633-3638.
  • Carabante, I. Grahn, M. Holmgren, A. Kumpiene, J. and Hedlund, J. 2009 Adsorption of As(V) on iron oxide nanoparticle films studied by in situ ATR-FTIR spectroscopy. Colloids Surf. A. 346 : 106?113.
  • Bowden, C. D. 2007. Epithermal systems of the Seongsan district, South Korea and investigation on the geological setting and spatial and temporal relationships between high and low sulfidation systems. Ph. D. dissertation, James Cook University, Australia : 334.
  • Biterna, M., Arditsoglou, A., Tsikouras, E. and Voutsa, D. 2007. Arsenate removal by zero valent iron: Batch and column tests. J . Hazard. Mater. 149(3): 548-552.
  • Biterna, M., Antonoglou, L., Lazou, E. and Voutsa, D. 2010. Arsenite removal from waters by zero valent iron: Batch and column tests. Chemosphere. 78(1) : 7-12.
  • Benn, T. M. and Westerhoff, P. 2008. Nanoparticle silver released into water from commercially available sock fabrics. Environ. Sci. Technol. 42(11) : 4133-4139.
  • Behrens, S. H., Borkovec, M. and Schurtenberger, P. 1998. Aggregation in charge-stabilized colloidal suspensions revisited. Langmuir. 14 : 1951-1954.
  • Beak, D. G. and Wilkin, R. T. 2009. Performance of a zerovalent iron permeable reactive barrier for the treatment of arsenic in groundwater: Part 2. Geochemical modeling and solid phase studies. J . Contam. Hydrol. 106 : 15-28.
  • Bang, S., Johnson, M. D., Korfiatis, G. P. and Meng, X. 2005. Chemical Reactions Between Arsenic and Zero-Valent Iron in Water. Water Res. 39 : 763-770.
  • Bandara, J., Klehm, U. and Kiwi. J. 2007. Raschig rings-Fe2O3 composite photocatalyst activate in the degradation of 4-chlorophenol and Orange II under daylight irradiation. Appl. Catal., B: Environ. 76 : 73-81.
  • Bai, B., Hankins, N. P., Hey, M. J. and Kingman, S. W. 2004. In situ mechanistic study of SDS adsorption on hematite for optimized froth flotation. Ind. Eng. Chem. Res. 43 : 5326-5338.
  • Baes, C. F. and Mesmer, R. E. 1979. The hydrolysis of cations. John Wiley and Sons, New York.
  • Baalousha, M., Nur, Y., R mer, I., Tejamaya, M. and Lead, J. R. 2013. Effect of monovalent and divalent cations, anions and fulvic acid on aggregation of citrate-coated silver nanoparticles. Sci. Total Environ. 454-455 : 119-131.
  • Baalousha, M., Manciulea, A., Cumberland, S., Kendall, K. and Lead, J. R. 2008. Aggregation and surface properties of iron oxide nanoparticles: Influence of pH and natural organic matter. Environ. Toxicol. Chem. 27(9) : 1875-1882.
  • Baalousha, M. 2009. Aggregation and disaggregation of iron oxide nanoparticles: Influence of particle concentration, pH and natural organic matter. Sci. Total Environ. 407(6) : 2093-2101.
  • Armijo, L. M., Brandt, Y. I., Mathew, D., Yadav, S., Maestas, S., Rivera, A. C., Cook, N. C., Withers, N. J., Smolyakov, G. A., Adolphi, N. L., Monson, T. C., Huber, D. L., Smyth, H. D. C. and Osi?ski, M. 2012. Iron oxide nanocrystals for magnetic hyperthermia applications. Nanomaterials 2(2) : 134-146.
  • Arai, Y, Elzinga, E. J. and Sparks, D. L. 2001 X-ray absorption spectroscopic investigation of arsenite and arsenate adsorption at the aluminum oxide-water interface. J . Colloid. Interf. Sci. 235 : 80?88.
  • Aquino, A. J. .A., Tunega, D., Haberhauer, G., Gerzabek, M. H. and Lischka, H. 2008. Acid-base properties of a goethite surface model: A theoretical view. Geochim. Cosmochim. Acta. 72 : 3587-3602.
  • Angela, A. J. and Saleh, A. M. 1986. Electron diffraction and the study of ferrihydrite coationgs on kaolinte. Clay minerals. 21 : 85-92.
  • Anderson, P. R. and Benjamin, M. M. 1985. Effects of silicon on the crystallization and adsorption properties of ferric oxides. Environ. Sci. Techn. 19 : 1048-1053.
  • An, J. M., Yim, G. J., Jung, J. W., Ji, S. W., Chenong, Y. W., Park, H. S. and Choi, S.I. 2011. Applicable effectiveness of organic mixtures for treatment of acid mine drainage in SAPS. J . Korean Soc. Geosyst. Eng. 48(1) : 34-44.
  • Ambashta, R. and Sillanp , M. 2010. Water purification using magnetic assistance: A review. J . Haz. Mat. 180(1-3) : 38-49.
  • Akhavana, O. and Azimiradb, R. 2009. Photocatalytic property of Fe2O3 nanograin chains coated by TiO2 nanolayer in visible light irradiation. Appl. Catal., A: General. 369(1-2) : 77-82.
  • ?1. Schwertmann, U. and Cornell, R. M. 2000. Iron oxides. Wiley-VCH Publishers, New York, USA.