박사

Study on Plasma-Cancer Cell Interactions using Atmospheric Pressure Plasma Jets = 대기압 플라즈마 젯을 이용한 플라즈마-암세포 상호작용 연구

조혜민 2015년
논문상세정보
' Study on Plasma-Cancer Cell Interactions using Atmospheric Pressure Plasma Jets = 대기압 플라즈마 젯을 이용한 플라즈마-암세포 상호작용 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 대기압플라즈마
  • 플라즈마-암세포 상호작용
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
29 0

0.0%

' Study on Plasma-Cancer Cell Interactions using Atmospheric Pressure Plasma Jets = 대기압 플라즈마 젯을 이용한 플라즈마-암세포 상호작용 연구' 의 참고문헌

  • Z. Cao, Q. Nie, D. L. Bayliss, J. L. Walsh, C. S. Ren, D. Z. Wang and M. G. Kong, Spatially extended atmospheric plasma arrays, Plasma Sources Sci. Technol. 19, 025003 (2010).
  • Y. Xian, X. Lu, Z. Tang, Q. Xiong, W. Gong, D. Liu, Z. Jiang, and Y. Pan, Optical and electrical diagnostics of an atmospheric pressure room-temperature plasma plume, J . Appl. Phys. 107, 063308 (2010).
  • Y. W. Lee, H. L. Lee and T. H. Chung, Dissociation fraction in low-pressure inductively coupled N2-Ar and O2-Ar plasmas, Curr. Appl. Phys. 11, S187 (2011).
  • Y. T. Zhang, and J. He, Frequency effects on the production of reactive oxygen species in atmospheric radio frequency helium-oxygen discharges. Phys. Plasmas 20, 013502 (2013).
  • Y. P. Raizer, Gas Discharge Physics, (Springer, Berlin, 1991).
  • Y. C. Hong and H. S. Uhm, Microplasma jet at atmospheric pressure, Appl. Phys. Lett. 89, 221504 (2006).
  • X. Zhang, J. Huang, X. Liu, L. Peng, L. Guo, G. Lv, W. Chen, K. Feng and S. ?Z. Yang, Treatment of Streptococcus mutans bacteria by a plasma needle. J . Appl. Phys. 105, 063302 (2009).
  • X. Yan, Z. Xiong, F. Zou, S. Zhao, Xinpei Lu, G. Yang, G. He and K. Ostrikov, Plasma-induced death of HepG2 cancer cells: Intracellular effects of reactive species. Plasma Process. Polym. 9, 59 (2012).]
  • X. T. Deng and M. G. Kong, Frequency range of stable dielectric-barrier discharges in atmospheric He and N2, IEEE Trans. Plasma Sci. 32, 1709 (2004).
  • X. Pei, X. Lu, J. Liu, D. Liu, Y. Yan, K. Ostrikov, Paul K. Chu, and Y Pan, Inactivation of a 25.5μm Enterococcus faecalis biofilm by a room-temperature battery-operated, handheld air plasma jet, J . Phys. D: Appl. Phys. 45, 165205 (2012).
  • X. P. Lu, Z. Jiang, Q. Xiong, Z. Tang, and Y. Pan, A single electrode room-temperature plasma jet device for biomedical applications, Appl. Phys. Lett. 92, 151504 (2008).
  • X. P. Lu, Z. Jiang, Q. Xiong, Z. Tang, X. Hu, and Y. Pan, An 11 cm long atmospheric pressure cold plasma plume for applications of plasma medicine, Appl. Phys. Lett. 92, 081502 (2008).
  • X. Lu, Q. Xiong, Z. Xiong, J. Hu, F. Zhou, W. Gong, Y. Xian, C. Zou, Z. Tang, Z. Jiang and Y. Pan, Propagation of an atmospheric pressure plasma plume, J . Appl. Phys. 105, 043304 (2009).
  • X. Lu, M. Laroussi, Dynamincs of atmospheric pressure plasma plume generated by submicrosecond voltage pulses, J . Appl. Phys. 100, 063302 (2006).
  • X. Lu, M. Laroussi and V. Puech, On atmospheric-pressure non-equilibrium plasma jets and plasma bullets, Plasma Sources Sci. Technol. 21, 034005 (2012).
  • X. Lu, G. V. Naidis, M. Laroussi, K. Ostrikov, Guided ionzation waves: Theory and experiments, Phys. Reports 540, 123 (2014).
  • X. Li, N. Yuan, P. Jia, and J. Chen, A plasma needle for generating homogeneous discharge in atmospheric pressure air, Phys. Plasmas 17, 093504 (2010).
  • X. Duan, F. He, and J. Ouyang, Prediction of atmospheric pressure glow discharge in dielectric-barrier system, Appl. Phys. Lett. 96, 231502 (2010).
  • W. Yan, Z. J. Han, W. Z. Liu, X. P. Lu, B. T. Phung, K. Ostrikov, Designing atmspheric-pressure plasma sources for surface engineering of nanomaterials, Plasma Chem. Plasma Process 33, 479 (2013).
  • W. Kim, K. C. Woo, G. ?C. Kim and K. ?T. Kim, Non thermal-plasma-mediated animal cell death, J . Phys. D: Appl. Phys. 44, 013001 (2011).
  • W. Bairong, Z. Wenchao and P. Yikang, Observation of the Emission Spectra of an Atmospheric Pressure Radio-frequency Plasma Jet, Plasma Sci. Technol. 7, 3045 (2005).
  • Vandamme, M. et al. ROS implication in a new antitumor strategy based on non-thermal plasma. Int. J . Cancer 130, 2185 (2012).
  • V. Scholtz, J. Jul k, V. Kr ha, The Microbicidal Effect of Low-Temperature Plasma Generated by Corona Discharge: Comparison of Various Microorganisms on an Agar Surface or in Aqueous Suspension, Plasma Process. Polym. 7, 237 (2010).
  • V. Raballand, J. Benedikt, and A. von Keudell, Deposition of carbon free silicon dioxide from pure hexamethyldisiloxane using an atmospheric microplasma jet, Appl. Phys. Lett. 92, 091501 (2008).
  • V. Leveille, and S. Coulombe, Design and preliminary characterization of a miniature pulsed RF APGD torch with downstream injection of the source of reactive species, Plasma Sources Sci. Technol. 14, 467 (2005).
  • Th. von Woedtke, S. Reuter, K. Masur, K. -D. Weltmann, Plasma for medicine, Physics Reports 530, 291 (2013).
  • Th. von Woedtke, H.-R. Metelmann and K.-D. Weltmann, Clinical Plasma Medicine: State and Perspectives of in Vivo Application of Cold Atmospheric Plasma, Contrib. Plasma Phys. 54, 104 (2014).
  • T. Ozben, Oxidative stress and apoptosis: impact on cancer therapy, J . Pharm. Sci. 96, 2181 (2007).
  • T. M. Johnson, Z. X. Yu, V. J. Ferrans, R. A. Lowenstein and T. Finkel, Reactive oxygen species are downstream mediators of p53-dependent apoptosis. Pro. Natl. Acad. Sci. 93, 11848 (1996).
  • T. J. Cheng, H. P. Kao, C. C. Chan and W. P. Chang, Effects of ozone on DNA single-strand breaks and 8-oxoguanine formation in A549 cells. Environ. Res. 93, 279 (2003).
  • S. U. Kang, J. -H. Cho, J. W. Chang, Y. S. Shin, K. I. Kim, J. K. Park, S. S. Yang, J. -S. Lee, E. Moon, K. Lee and C.-H. Kim, Nonthermal plasma induces head and neck cancer cell death: the potential involvement of mitogen-activated protein kinase-dependent mitochondrial reactive oxygen species. Cell Death Dis. 5, e1056 (2014).
  • S. J. Kim, T. H. Chung, S. H. Bae, and S. H. Leem, Induction of apoptosis in human breast cancer cells by a pulsed atmospheric pressure plasma jet, Appl. Phys. Lett. 97, 023702 (2010).
  • S. J. Kim and T. H. Chung, Effects of control parameters on plasma bullet propagation in a pulsed atmospheric pressure argon plasma jet, IEEE Trans. Plasma Sci. 39, 2280 (2011).
  • S. Blackert, B. Haertel, K. Wende, Th. von Woedtke, U. Lindequist, Influence of non-thermal atmospheric pressure plasma on cellular structures and processes in human keratinocytes (HaCaT), J . Dermatol. Sci. 70, 173 (2013).
  • R. Ye and W. Zheng, Temporal-spatial-resolved spectroscopic study on the formation of an atmospheric pressure microplasma jet,” Appl. Phys. Lett. 93, 071502 (2008).
  • R. Foest, E. Kindel, H. Lange, A. Ohl, M. Stieber, and K. -D. Weltmann, RF Capillary Jet - a Tool for Localized Surface Treatment, Contrib. Plasma Phys. 47, 119 (2007).
  • Q. Xiong, X. P. Lu, K. Ostrikov, Y. Xian, C. Zou, Z. Xiong and Y. Pan, Pulsed dc- and sine-wave-excited cold atmospheric plasma plumes: A comparative analysis, Phys. Plasmas 17, 043506 (2010).
  • Q. Xiong, X. Lu, J. Liu, Y. Xian, Z. Xiong, F. Zou, C. Zou, W. Gong, J. Hu, K. Chen, X. Pei, Z. Jiang, and Y. Pan, Temporal and spatial resolved optical emission behaviors of a cold atmospheric pressure plasma jet, J . Appl. Phys. 106, 083302 (2009).
  • Q. Xiong, A. Y. Nikiforov, X. P. Lu and C. Leys, High-speed dispersed photographing of an open-air argon plasma plume by a grating?ICCD camera system, J . Phys. D: Appl. Phys. 43, 415201 (2010).
  • Q. Li, X. M. Zhu, J. T. Li and Y. K. Pu, Role of metastable atoms in the propagation of atmospheric pressure dielectric barrier discharge jets, J . Appl. Phys. 107, 043304 (2010).
  • N. Y. Babaeva and M. J. Kushner, Interaction of multiple atmospheric-pressure micro-plasma jets in small arrays: He/O2 into humid air, Plasma Sources Sci. Technol. 23, 015007 (2014).
  • N. Knake, K. Niemi, S. Reuter, V. S. Gathen and J. Winter, Absolute atomic oxygen density profiles in the discharge core of a microscale atmospheric pressure plasma jet, Appl. Phys. Lett. 93, 131503 (2008).
  • N. Barekzi, and M. Laroussi, Effects of low temperature plasmas on cancer cells. Plasma Process. Polym. 10, 1039 (2013).
  • M. Thiyagarajan, A. Sarani and C. Nicula, Optical emission spectroscopic diagnostics of a non-thermal atmospheric pressure helium-oxygen plasma jet for biomedical applications, J . Appl. Phys. 113, 233302 (2013).
  • M. Teschke, J. Kedzierski, E. G. Finantu-Dinu, D. Korzec, and J. Engemann, High-speed photographs of a dielectric barrier atmospheric pressure plasma jet,” IEEE Trans. Plasma Sci. 33, 310 (2005).
  • M. Qian, C. Ren, D. Wang, J. Zhang, and G. Wei, Stark broadening measurement of the electron density in an atmospheric pressure argon plasma jet with double-power electrodes, J . Appl. Phys. 107, 063303 (2010).
  • M. Noeske, J. Degenhardt, S. Strudthoff, and U. Lommatzsch, Plasma jet treatment of five polymers at atmospheric pressure: surface, modifications and the relevance for adhesion, Int. J . Adhes. 24, 171 (2004).
  • M. Laroussi, Sterilization of contaminated matter with an atmospheric pressure plasma, IEEE Trans. Plasma Sci. 24, 1188 (1996).
  • M. Laroussi, M. G. Kong, G. Morfill and W. Stolz, Plasma Medicine (Cambridge University Press, New York, 2012).
  • M. Laroussi and X. Lu, Room-temperature atmospheric pressure plasma plume for biomedical applications, Appl. Phys. Lett. 87, 113902 (2005).
  • M. Laroussi and T. Akan, Arc-atmospheric pressure cold plasma jets: A Review, Plasma Process. Polym. 4, 777 (2007).
  • M. Keidar, A. Shashurin, O. Volotskova, M. A. Stepp, P. Srinivasan, A. Sandler and B. Trink, Cold atmospheric plasma in cancer therapy, Phys. Plasmas 20, 057101 (2013).
  • M. Iwasaki, H. Inui, Y. Matsudaira, H. Kano, N. Yoshida, M. Ito, and Masaru Hori, Nonequilibrium atmospheric pressure plasma with ultrahigh electron density and high performance for glass surface cleaning, Appl. Phys. Lett. 92, 081503 (2008).
  • M. Ishaq, M. Evans and K. Ostrikov, Effect of atmospheric gas plasma on cancer cell signaling. Int. J . Cancer 134, 1517 (2014).
  • M. Hoentsch, Th. von Woedtke, K. -D. Weltmann and J. B. Nebe, Time-dependent effects of low-temperature atmospheric- pressure argon plasma on epithelial cell attachment, viability and tight junction formation in vitro, J . Phys. D: Appl. Phys. 45, 025206 (2012).
  • M. H. Guerra-Mutis, C. V Pelaez U. and Rafael Cabanzo H., Glow plasma jet?experimental study of a transferred atmospheric pressure glow discharge, Plasma Sources Sci. Technol. 12, 165 (2003).
  • M. H hnel, Th. von Woedtke and K. -D. Weltmann, Influence of the air humidity on the reduction of Bacillus Spores in a defined environment at atmospheric pressure using a dielectric barrier surface discharge, Plasma Process. Polym. 7, 244 (2010).
  • M. G. Kong, G. Krosen, G. Morfill, T. Nosenko, T. Shimizu, J. van Dijk and J. L. Zemmermann, Plasma medicine: an introductory review, New J . Phys. 11, 115012 (2009).
  • M. C. Kim, D. K. Song, H. S. Shin, SH. Baeg, G. S. Kim, JH. Boo, J. G. Han, and S. H. Yang, Surface modification of polymer fibre by the new atmospheric pressure cold plasma jet, Surf. Coat. Tech. 172, 312 (2003).
  • L. B. Loeb, Recent Developments in Analysis of the Mechanisms of Positive and Negative Coronas in Air, J . Appl. Phys. 19, 882 (1948).
  • L. B rdos and H. Bar nkov , Cold atmospheric plasma: Sources, processes, and applications, Thin Solid Films 518, 6705 (2010).
  • K. Niemi, S. Reuter, L. M. Graham, J. Waskoenig and T. Gans, Diagnostic based modeling for determining absolute atomic oxygen densities in atmospheric pressure helium-oxygen plasma. Appl. Phys. Lett. 95, 151504 (2009).
  • J. Y. Kim, Y. Wei, J. Li, P. Foy, T. Hawkins, J. Ballato and S. O. Kim, Apoptosis of lung carcinoma cells induced by a flexible optical fiber-based cold microplasma, Small 7, 2291 (2011).
  • J. Y. Jeong, S. E. Babayan, V. J. Tu, J. Park, R. F. Hicks, and G. S. Selwyn, Etching materials with an atmospheric-pressure plasma jet, Plasma Source Sci. Technol. 7, 282?285 (1998).
  • J. Shi, F. Zhong, and J. Zhang, D. W. Liu and M. G. Kong, A hypersonic plasma bullet train traveling in an atmospheric dielectric-barrier discharge jet, Phys. Plasmas 15, 013504 (2008).
  • J. L. Walsh, J. J. Shi and M. G. Kong, Contrasting characteristics of pulsed and sinusoidal cold atmospheric plasma jets, Appl. Phys. Lett. 88, 171501 (2006).
  • J. L. Walsh, F. Iza, N. B. Janson, V. J. Law, and M. G. Kong, Three distinct modes in a cold atmospheric pressure plasma jet, J . Phys. D, Appl. Phys. 43, 075201 (2010).
  • J. L. Walsh and M. G. Kong, Contrasting characteristics of linear-field and cross-field atmospheric plasma jets, Appl. Phys. Lett., 93, 111501 (2008)
  • J. Jarrige, M. Laroussi, and E. Karakas, Formation and dynamics of plasma bullets in a non-thermal plasma jet: Influence of the high-voltage parameters on the plume characteristics,” Plasma Sources Sci. Technol. 19, 065005 (2010).
  • J. Huang, H. Li, W. Chen, G.-H. Lv, X.-Q. Wang, G.-P. Zhang, K. Ostrikov, P.-Y. Wang, and S.-Z. Yang, Dielectric barrier discharge plasma in Ar/O2 promoting apoptosis behavior in A549 cancer cells, Appl. Phys. Lett. 99, 253701 (2011).
  • J. H. Choi, S. H. Nam, Y. S. Song, H. W. Lee, H. J. Lee, K. Song, J.W. Hong, G. C. Kim, Treatment with low-temperature atmospheric pressure plasma enhances cutaneous delivery of epidermal growth factor by regulating E-cadherin-mediated cell junctions, Arch. Dermatol. Res. DOI 10.1007/s00403-014-1463-9 (Online first publication) (2014).
  • J. Goree, B. Liu, D. Drake and E. Stoffels, Killing of S. mutans Bacteria Using a Plasma Needle at Atmospheric Pressure, IEEE Trans. Plasma Sci. 34, 1317 (2006).
  • J. F. Kolb, A.-A H. Mohamed, R. O. Price, R. J. Swanson, A. Bowman, R. L. Chiavarini, M. Stacey and K. H. Schoenbach, Cold atmospheric pressure air plasma jet for medical applications Appl. Phys. Lett. 92, 241501 (2008).
  • J. Ehlbeck, U. Schnabel, M. Polak, J. Winter, Th. von Woedtke, R. Brandenburg, T. von dem Hagen and K. -D. Weltmann, Low temperature atmospheric pressure plasma sources for microbial decontamination, J . Phys. D: Appl. Phys. 44, 013002 (2011).
  • J. Choi, A. H. Mohamed, S. K. Kang, K. C. Woo, K. T. Kim, J. K. Lee, 900-MHz Nonthermal Atmospheric Pressure Plasma Jet for Biomedical Applications Plasma Process. Polym. 7, 258 (2010).
  • I. E. Kieft, E. P. van der Laan and E. Stoffels, Electrical and optical characterization of the plasma needle, New J . Phys. 6, 149 (2004).
  • H. Zhu, G. L. Bannenberg, Mold us P, H. G. Shertzer, Oxidation pathways for the intracellular probe 2’, 7’-dichlorofluorescein, Arch. Toxicology 68, 582 (1994).
  • H. S. Park, S. J. Kim, H. M. Joh, T. H. Chung, S. H. Bae, and S. H. Leem, Optical and electrical characterization of an atmospheric pressure microplasma jet with a capillary electrode, Phys. Plasmas 17, 033502 (2010).
  • H. Pelicano, D. Carney and P. Huang, ROS stress in cancer cells and therapeutic implications. Drug Resist. Updat. 7, 97 (2004).
  • H. M. Joh, S. J. Kim, T. H. Chung and S. H. Leem, Reactive oxygen species-related plasma effects on the apoptosis of human bladder cancer cells in atmospheric pressure pulsed plasma jets. Appl. Phys. Lett. 101, 053703 (2012).
  • H. Kim, A. Brockhaus, and J. Engemann, Atmospheric pressure argon plasma jet using a cylindrical piezoelectric transformer, Appl. Phys. Lett. 95, 211501 (2009).
  • H. J. White, A study of the initial stages of spark discharges in gases, Phys. Rev. 46, 99 (1934).
  • H. -E. Wagner, R. Brandenburg, K. V. Kozlov, A. Sonnenfeld, P. Michel, J. F. Behnke, The barrier discharge: basic properties and applications to surface treatment, Vacuum 71, 417 (2003).
  • G. Y. Park, Y. J. Hong, H. W. Lee, J. Y. Sim and J. K. Lee, A Global Model for the Identification of the Dominant Reactions for Atomic Oxygen in He/O2 Atmospheric-Pressure Plasmas. Plasma Process. Polym. 7, 282 (2010).
  • G. Y. Park, H. W. Lee, G. ?C. Kim, and J. K. Lee, Global Model of He/O2 and Ar/O2 Atmospheric Pressure Glow Discharges, Plasma Process. Polym. 5, 569 (2008).
  • G. W. Trichel, The mechanism of the negative point to plane corona near onset, Phys. Rev. 54, 1078 (1938).
  • G. J. Kim, W. Kim, K. T. Kim, and J. K. Lee, DNA damage and mitochondria dysfunction in cell apoptosis induced by nonthermal air plasma, Appl. Phys. Lett. 96, 021502 (2010).
  • G. Chen, S. Chen, M. Zhou, W. Feng, W. Gu1 and S. Yang, The preliminary discharging characterization of a novel APGD plume and its application in organic contaminant degradation, Plasma Sources Sci. Technol. 15, 603 (2006).
  • G. A. Dawso and W. P. Winn, A Model for Streamer Propagation, Zeitschrift Phys. 183, 159 (1965).
  • F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, M. G. Kong, Microplasmas: Sources, Particle Kinetics, and Biomedical Applications Plasma Process. Polym. 5, 322 (2008).
  • E. Stoffels, Y. Sakiyama and D. B. Graves, Cold atmospheric plasma: charged species and their interactions with cells tissues, IEEE Trans. Plasma Sci. 36, 1441 (2008).
  • E. Stoffels, A. J. Flikweert, W. W. Stoffels and G. M. W. Kroesen, Plasma needle: a non-destructive atmospheric plasma source for fine surface treatment of (bio) materials, Plasma Sources Sci. Technol. 11, 383 (2002).
  • E. Karakas, M. A. Akman, and M. Laroussi, The evolution of atmospheric-pressure low-temperature plasma jets: Jet current measurements,” Plasma Sources Sci. Technol. 21, 034016 (2012).
  • D. Trachootham, J. Alexandre and P. Huang, Targeting cancer cells by ROS-mediated mechanisms: a radical therapeutic approach? Nat. Rev. Drug Discov. 8, 579 (2009).
  • D. Staack, B. Farouk, A. Gutsol and A. Fridman, DC normal glow discharges in atmospheric pressure atomic and molecular gases, Plasma Sources Sci. Technol. 17, 025013 (2008).
  • D. Pagnon, J. Amorim, J. Nahorny, M. Touzeau and M. Vialle, On the use of actinometry to measure the dissociation in O2 DC glow discharge: determination of the wall recombination probability, J . Phys. D: Appl. Phys. 28, 1856 (1995).
  • D. Mariotti, V. Svrcek, and D. G. Kim, Self-organized nanostructures on atmospheric microplasma exposed surfaces, Appl. Phys. Lett. 91, 183111 (2007).
  • D. L. Crintea, U. Czarnetzki, S. Iordanova, I. Koleva and D. Luggenh lscher, Plasma diagnostics by optical emission spectroscopy on argon and comparison with Thomson scattering, J . Phys. D: Appl. Phys. 42, 045208 (2009).
  • D. Dobrynin, G. Fridman, G. Friedman and A. Fridman, Physical and biological mechanisms of direct plasma interaction with living tissue, New J . Phys. 11, 115020 (2009).
  • D. B. Graves, The emerging role of reactive oxygen and nitrogen species in redox biology and some implications for plasma applications to medicine and biology, J . Phys. D: Appl. Phys. 45 263001 (2012).
  • D. -X. Liu, M.-Z. Rong, X.-H. Wang, F. Iza, M. G. King and P. Bruggeman, Main Species and Physicochemical Processes in Cold Atmospheric-pressure He+O2 Plasmas. Plasma Process. Polym. 7, 846 (2010).
  • C. Tendero, C. Tixier, P. Tristant, J. Desmaison, P. Leprince, Atmospheric pressure plasmas: A review, Spectrochim. Acta Part B 61, 2 (2006).
  • C. H. Kim, J. H. Bahn, S. H. Lee, G. Y. Kim , S. I. Jun, K. Lee, S. J. Baek, Induction of cell growth arrest by atmospheric non-thermal plasma in colorectal cancer cells. J . Biotechnology 150, 530 (2010).
  • B. Gweon, D. B. Kim, D. Kim, H. Kim, H. Jung, J. H. Shin, and W. Choe, Differential responses of human liver cancer and normal cells to atmospheric pressure plasma, Appl. Phys. Lett. 99, 063701 (2011).
  • A. Shashurin, M. Keidar, S. Bronnikov, R. A. Jurjus, and M. A. Stepp, Living tissue under treatment of cold plasma atmospheric jet, Appl. Phys. Lett. 93, 181501 (2008).
  • A. Sch tze, J. Y. Jeong, S. E. Babayan, J.-Y. Park, G. S. Selwyn and R. F. Hicks, The Atmospheric-Pressure Plasma Jet: A Review and Comparison to Other Plasma Sources, IEEE Trans. Plasma Sci. 26, 1685 (1998).
  • A. Saraste and K. Pulkki, Morphologic and biochemical hallmarks of apoptosis, Cardiovasc. Res. 45, 528 (2000).
  • A. Fridman, A. Chirokov, and A. Gutsol, Non-thermal atmospheric pressure discharges, J . Phys. D, Appl. Phys. 38, R1 (2005).
  • A. Fridman and G. Friedman, Plasma Medicine (John Wiley & Sons Ltd, Oxford, 2013).
  • A. F. Kip, Onset studies of positive point-to-plane corona in air at atmospheric pressure, Phys. Rev. 55, 549 (1939),
  • A. Ershov, and J. Borysow, Atomic oxygen densities in a downstream microwave O2/Ar plasma source, Plasma Sources Sci. Technol. 16, 798 (2007).
  • ?G. Fridman, G. Friedman, A. Gutsol, A. B. Shekhter, V. N. Vasilets, A. Fridman, Applied Plasma Medicine, Plasma Process. Polym. 5, 503 (2008).