박사

Nonlinear structural response analysis of ship and offshore structures in low temperature = 저온환경에서의 선박 및 해양플랜트의 비선형 구조 응답 해석에 관한 연구

박대겸 2015년
논문상세정보
' Nonlinear structural response analysis of ship and offshore structures in low temperature = 저온환경에서의 선박 및 해양플랜트의 비선형 구조 응답 해석에 관한 연구' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 비선형 구조응답
  • 선박
  • 저온환경
  • 해양플랜트
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
201 0

0.0%

' Nonlinear structural response analysis of ship and offshore structures in low temperature = 저온환경에서의 선박 및 해양플랜트의 비선형 구조 응답 해석에 관한 연구' 의 참고문헌

  • Wood, P., Schley, C. A., Kenny, S., Dutton, T., Bloomfield, M., Bardenheier, R., & Smith, J. (2006, June). Validating performance of automotive materials at high strain rate for improved crash design. In Proceedings of 9th Int. LS-DYNA Users’ Conference.
  • Wi?niewski, K., & Kołakowski, P. (2003). The effect of selected parameters on ship collision results by dynamic FE simulations. Finite Elements in Analysis and Design, 39(10), 985-1006.
  • White Jr, G. N., & Drucker, D. C. (1950). Effective stress and effective strain in relation to stress theories of plasticity. Journal of Applied Physics, 21(10), 1013-1021.
  • Wang, Y. Q., Liu, X. Y., Hu, Z. W., & Shi, Y. J. (2013). Experimental study on mechanical properties and fracture toughness of structural thick plate and its butt weld along thickness and at low temperatures. Fatigue & Fracture of Engineering Materials & Structures, 36(12), 1258-1273.
  • Wang, T., Hopperstad, O. S., Lademo, O. G., & Larsen, P. K. (2007). Finite element analysis of welded beam-to-column joints in aluminium alloy EN AW 6082 T6. Finite elements in analysis and design, 44(1), 1-16.
  • Villavicencio, R., & Soares, C. G. (2013). Impact response of rectangular and square stiffened plates supported on two opposite edges. Thin-Walled Structures, 68, 164-182.
  • Villavicencio, R., & Soares, C. G. (2012). Numerical plastic response and failure of a prenotched transversely impacted beam. Ships and Offshore Structures, 7(4), 417-429.
  • Veritas, D. N. (2010). Design against accidental loads. Recommended practice DNV-RPC204.
  • Toernqvist, R., & Simonsen, B. C. (2004). Safety and Structural Crashworthiness of Ship Structures; modeling tools and application in Design. In Procedings of 3rd International Conference on Collision and Grounding of Ships, ICCGS2004 (pp. 285-294).
  • Sumpter, J. D. G., & Kent, J. S. (2006). Fracture toughness of grade D ship steel. Engineering fracture mechanics, 73(10), 1396-1413.
  • Sumpter, J. D. G., & Caudrey, A. J. (1995). Recommended fracture toughness for ship hull steel and weld. Marine structures, 8(4), 345-357.
  • Sohn, J. M., Kim, S. J., Seong, D. J., Kim, B. J., Ha, Y. C., Seo, J. K., Paik, J. K. (2014). Structural impact response characteristics of an explosion-resistant profiled blast walls in arctic conditions . Structural Engineering and Mechanics51(5), 755-771.
  • Servis, D., & Samuelides, M. (1999). Ship collision analysis using finite elements. Safer Euroro Spring Meeting, Nantes.
  • Sanderson, T. J. (1988). Ice mechanics and risks to offshore structures.
  • Pedersen, P. T. (2010). Review and application of ship collision and grounding analysis procedures. Marine Structures, 23(3), 241-262.
  • Park, W. S., Lee, C. S., Chun, M. S., Kim, M. H., & Lee, J. M. (2011). Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: Part II?Constitutive model. Materials Science and Engineering: A, 528(25), 7560-7569.
  • Park, W. S., Chun, M. S., Han, M. S., Kim, M. H., & Lee, J. M. (2011). Comparative study on mechanical behavior of low temperature application materials for ships and offshore structures: Part I?Experimental investigations. Materials Science and Engineering: A, 528(18), 5790-5803.
  • Park, D. K., Lee, B. J., Han, H. W., Kim, B. J., Seo, J. K., Paik, J. K. (2013). Material Properties and Crashworthiness of ASTM A131Steel Plated Structures at Low Temperature: An Experimental and Numerical Study. In: Proceedings of the PRADS2013, Changwon City, Korea, October 2013.
  • Park, D. K., Kim, D. K., Kim, B. J., Seo, J. K., & Paik, J. K. (2012, July). Effects of Low Temperature on ASTM A131: An Experimental and Numerical Study. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering (pp. 425-437). American Society of Mechanical Engineers.
  • Park, D. K., Kim, D. K., Kim, B. J., Seo, J. K., & Paik, J. K. (2012). Effects of Low Temperature on ASTM A131: An Experimental and Numerical Study. In ASME 2012 31st International Conference on Ocean, Offshore and Arctic Engineering (pp. 425-437). American Society of Mechanical Engineers.
  • Paik, J. K., Kim, D. K., Park, D. H., Kim, H. B., Mansour, A. E., & Caldwell, J. B. (2013). Modified Paik?Mansour formula for ultimate strength calculations of ship hulls. Ships and Offshore Structures, 8(3-4), 245-260.
  • Paik, J. K., Kim, D. K., Park, D. H., Kim, H. B., & Kim, M. S. (2012). A new method for assessing the safety of ships damaged by grounding. International Journal of Maritime Engineering, 154, A1-A20.
  • Paik, J. K., Kim, D. K., & Kim, M. S. (2009). Ultimate strength performance of Suezmax tanker structures: pre-CSR versus CSR designs. Analysis and Design of Marine Structures: including CD-ROM, 1, 181.
  • Paik, J. K., Kim, B. J., Park, D. K., & Jang, B. S. (2011). On quasi-static crushing of thinwalled steel structures in cold temperature: Experimental and numerical studies. International Journal of Impact Engineering, 38(1), 13-28.
  • Paik, J. K., & Wierzbicki, T. (1997). A benchmark study on crushing and cutting of plated structures. Journal of Ship Research, 41(2), 147-160.
  • Paik, J. K., & Thayamballi, A. K. (2007). Ship-shaped offshore installations: design, building, and operation. Cambridge University Press.
  • Paik, J. K., & Thayamballi, A. K. (2003). Ultimate limit state design of steel-plated structures. John Wiley & Sons.
  • Paik, J. K., & Melchers, R. E. (Eds.). (2014). Condition assessment of aged structures. Elsevier.
  • Paik, J. K. (2007). Practical techniques for finite element modeling to simulate structural crashworthiness in ship collisions and grounding (Part II: Verification). Ships and Offshore Structures, 2(1), 81-85.
  • Paik, J. K. (2007). Practical techniques for finite element modeling to simulate structural crashworthiness in ship collisions and grounding (Part I: Theory). Ships and Offshore Structures, 2(1), 69-80.
  • Nemat-Nasser, S., & Guo, W. G. (2003). Thermomechanical response of DH-36 structural steel over a wide range of strain rates and temperatures. Mechanics of Materials, 35(11), 1023-1047.
  • NORDIC (2010). Historic sea route opens through the Arctic to China. NSR project 2010 newsletter, august 2010.
  • Morrison, J., & Wu, X. (2002). The toughness transition curve of a ship steel. European Structural Integrity Society, 30, 385-392.
  • Morales, E. M. Significance of the Ratio of Tensile Strength to Yield Stress (TS/YS) of Reinforcing Bars. (http://www.pgatech.com).
  • Miyagi, Y., Hino, M., Fujino, M., & Yanai, H. (1985). Properties of thick 5083-0 aluminum alloy plates for the equatorial ring of a spherical LNG cargo tank. Journal of materials for energy systems, 6(4), 273-278.
  • Min, D. K., Shim, C. S., Shin, D. W., & Cho, S. R. (2011). On the Mechanical Properties at Low Temperatures for Steels of Ice-Class Vessels. Journal of the Society of Naval Architects of Korea, 48(2), 171-177.
  • Min, D. K., Heo, Y. M., Shin, D. W., Kim, S. H., & Cho, S. R. (2013, May). On the plastic and fracture damage of polar class vessel structures subjected to impact loadings. In Proc. 6th international conference on collision and grounding of ships and offshore structures: Trondheim, Norway (pp. 213-220).
  • Min, D. K., Heo, Y. M., & Cho, S. R. (2012). Low Temperature Plastic Hardening Constitutive Equation for Steels of Polar Class Vessels. Journal of the Society of Naval Architects of Korea, 49(2), 227-231.
  • Liu, Z., Amdahl, J., & L set, S. (2011). Integrated numerical analysis of an iceberg collision with a foreship structure. Marine Structures, 24(4), 377-395.
  • Liu, Z., & Amdahl, J. (2010). A new formulation of the impact mechanics of ship collisions and its application to a ship?iceberg collision. Marine Structures, 23(3), 360- 384.
  • Liu, P. F., & Zheng, J. Y. (2010). Finite Element Analysis of Tensile Behavior of Ductile Steel with Defects. Journal of Failure Analysis and Prevention, 10(3), 212- 217.
  • Lei, W., Yan, X., & Yao, M. (1993). Ductile/brittle transition condition in Charpy V-notch impact test in structural steel. Engineering fracture mechanics, 46(4), 601- 605.
  • Lee, K. Y., Kim, T. H., & Lee, H. Y. (2009). Acquirement of true stress-strain curve using true fracture strain obtained by tensile test and FE analysis.
  • LS-DYNA (2014). User’s manual, Version 971, Livermore Software Technology Corporation, Livermore, California, USA.
  • Kwon, Y. I. (2013). Creation of conditions to attract transit cargoes to the far eastern ports. Far East Investment Congress (The 6th Pacific Economic Congress), Vladivostok, Russia, September.
  • Kwak, M. J., Choi, J. H., Hwang, O. J., & Oh, Y. T. (2013). Ship-ice collision analysis to define ice model according to. Collision and Grounding of Ships and Offshore Structures, 205.
  • Kohyama, A., Hamada, K., & Matsui, H. (1991). Specimen size effects on tensile properties of neutron-irradiated steels. Journal of nuclear materials, 179, 417-420.
  • Kohno, Y., Kohyama, A., Hamilton, M. L., Hirose, T., Katoh, Y., & Garner, F. A. (2000). Specimen size effects on the tensile properties of JPCA and JFMS. Journal of nuclear materials, 283, 1014-1017.
  • Kim, Y. S., Park, D. K., Kim, S. J., Lee, D. H., Kim, B. J., Ha, Y. C., Seo, J. K. and Paik, J. K. (2014). Ultimate Strength Assessment of Ship Stiffened Panel under Arctic Conditions. Journal of the Society of Naval Architects of Korea, 51(4), 283- 290.
  • Kim, M. S. and Cheng, Y. F. (2012). Limit states rules: Past experiences and future scenarios. The 11th International Marine Design Conference (IMDC 2012), Glasgow, UK, June.
  • Kim, E., Storheim, M., Amdahl, J., Loset, S., & und Polach, R. V. B. (2013). Drop tests of ice blocks on stiffened panels with different structural flexibility. Collision and Grounding of Ships and Offshore Structures, 241.
  • Kim, D. K., Pedersen, P. T., Paik, J. K., Kim, H. B., Zhang, X., & Kim, M. S. (2013). Safety guidelines of ultimate hull girder strength for grounded container ships. Safety science, 59, 46-54.
  • Kim, D. K., Park, D. K., Seo, J. K., Paik, J. K., & Kim, B. J. (2012). Effects of low temperature on mechanical properties of steel and ultimate hull girder strength of commercial ship. KOREAN JOURNAL OF METALS AND MATERIALS, 50(6), 427-432.
  • ISO (2000). Metallic materials- Tensile testing at low temperature, ISO 15579:2000, Geneva, Switzerland. J ones, N. (2011). Structural impact. Cambridge University Press.
  • IMO (2011). MARPOL ANNEX VI. International Maritime Organization, London, UK. ISF. International Shipping Federation (www.marisec.org).
  • IMO (2010). Prevention of Air Pollution from Ships, Second IMO GHG study, MEPC 61/INF.10, London
  • IACS (2011). Requirements concerning POLAR CLASS. International Association of Classification Societies, London, UK.
  • IACS (2007). Requirements concerning STRENGTH OF SHIPS. International Association of Classification Societies, London, UK.
  • IACS (2006). Common structural rules for double hull oil tankers, London,UK.
  • Hoppe, H. (2006). Goal based standards?a new approach to the international regulation of ship construction. IMO News, (1).
  • Hill, B. T. (2000). Database of ship collisions with icebergs. Report of the International Ice Patrol Bulletin in the North Atlantic. 2000 Season, Bulletin No. 86, CG-188, 55.
  • Haris, S., & Amdahl, J. (2013). Analysis of ship?ship collision damage accounting for bow and side deformation interaction. Marine Structures, 32, 18-48.
  • H. Deggim (2011). Development of a mandatory polar code ?update on progress. (http://www.imo.org/MediaCentre/HotTopics/polar/Documents/polarcodePP T2011.pdf).
  • Ernst, H. A., Bravo, R. E., Villasante, J. A., & Izquierdo, A. (2011). Effect of the Yield to Tensile Ratio on Structural Integrity of Linepipes Subjected to Internal Pressure. Journal of Offshore Mechanics and Arctic Engineering, 133(3), 031401.
  • Emmerson, C., & Lahn, G. (2012). Arctic opening: Opportunity and risk in the high north. Lloyd's.
  • Ehlers, S., Benson, S., & Misirlis, K. (2013). Ultimate strength of an intact and damaged LNG vessel subjected to sub-zero temperature. Collision and Grounding of Ships and Offshore Structures, 289.
  • Ehlers, S., & Varsta, P. (2009). Strain and stress relation for non-linear finite element simulations. Thin-Walled Structures, 47(11), 1203-1217.
  • Ehlers, S., & stby, E. (2012). Increased crashworthiness due to arctic conditions?The influence of sub-zero temperature. Marine Structures, 28(1), 86-100.
  • Ehlers, S. (2013). A particle swarm optimization-based procedure to obtain a crashworthy ice-classed LNG tanker. Collision and Grounding of Ships and Offshore Structures, 233.
  • EN, C. (2005). 1-2, Eurocode 3: design of steel structures, part 1.2: general rules? structural fire design. London: British Standards Institution.
  • DNV (2012), “Arctic Resource Development- Risks and Responsible Management”, A Joint Report from FNI and DNV Prepared for the ONS Summit 2012, H vik, Norway.
  • Cowper, G. R., & Symonds, P. S. (1957). Strain-hardening and strain-rate effects in the impact loading of cantilever beams (No. TR-C11-28). BROWN UNIV PROVIDENCE RI.
  • Conley, H., & Kraut, J. (2010). US strategic interests in the Arctic: an assessment of current challenges and new opportunities for cooperation. Center for Strategic and International Studies.
  • Choung, J., Nam, W., & Lee, J. Y. (2013). Dynamic hardening behaviors of various marine structural steels considering dependencies on strain rate and temperature. Marine Structures, 32, 49-67.
  • Choung, J. M., Shim, C. S., & Kim, K. S. (2011). Plasticity and fracture behaviors of a marine structural steel, part III: experimental study on failure strain. Journal of Ocean Engineering and Technology, 25(3), 53-66.
  • Choung, J. M., Shim, C. S., & Kim, K. S. (2011). Plasticity and Fracture Behaviors of a Marine Structural Steel, Part II: Theoretical Backgrounds of Fracture. Journal of Ocean Engineering and Technology, 25(2), 92-100.
  • Choung, J. M., Shim, C. S., & Kim, K. S. (2011). Plasticity and Fracture Behaviors of a Marine Structural Steel, Part I: Theoretical Backgrounds of Strain Hardening and Rate Hardening. Journal of Ocean Engineering and Technology, 25(2), 134-144.
  • Choung, J. M., Im, S. W., & Park, R. S. (2011). Plasticity and Fracture Behaviors of Marine Structural Steel, Part IV: Experimental Study on Mechanical Properties at Elevated Temperatrures. Journal of Ocean Engineering and Technology, 25(3), 67-73.
  • Choung, J. M., Im, S. W., & Kim, K. S. (2011). Plasticity and Fracture Behaviors of Marine Structural Steel, Part V: Effects of Strain Rate and Temperature. Journal of Ocean Engineering and Technology, 25(3), 74-85.
  • Choung, J. M., & Cho, S. R. (2008). Study on true stress correction from tensile tests. Journal of Mechanical Science and Technology, 22(6), 1039-1051.
  • Choung, J. M., & Cho, S. R. (2008). Experimental and theoretical investigations on the fracture criteria for structural steels. Journal of Society of Naval Architects of Korea (SNAK), 45(2), 157-167.
  • Choung, J. M. (2009). Comparative studies of fracture models for marine structural steels. Ocean Engineering, 36(15), 1164-1174.
  • Bridgman, P. W. (1952). Studies in large plastic flow and fracture. McGraw-Hill.
  • Bao, Y. (2005). Dependence of ductile crack formation in tensile tests on stress triaxiality,stress and strain ratios. Engineering fracture mechanics, 72(4), 505-522.
  • Bannister, A. C., & Trail, S. J. (1996). Structural integrity assessment procedures for European industry. British steel plc.
  • Alsos, H. S., Amdahl, J., & Hopperstad, O. S. (2009). On the resistance to penetration of stiffened plates, Part II: Numerical analysis. International Journal of Impact Engineering, 36(7), 875-887.
  • Alsos, H. S., & Amdahl, J. (2007). On the resistance of tanker bottom structures during stranding. Marine Structures, 20(4), 218-237.
  • ASTM (2013). Standard test methods for tensile testing of metallic materials, ASTM E8/E8M-13a, Pennsylvania, USA.
  • ASTM (2013). Standard specification for structural steel for ships, ASTM A131/A131M-13, Pennsylvania, USA.
  • ASTM (2013). Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASRM E23-12c, Pennsylvania, USA.
  • ASTM (2007). Standard test methods for tensile strain-hardening exponents (n- values) of metallic sheet materials, ASTM E646-07, Pennsylvania, USA.
  • ALPS/ULSAP (2012). A Computer Program for Ultimate Limit State Assessment for Stiffened Panels, Proteus Engineering, Stevensville, MD, USA (www.maestromarine.com).
  • ALPS/HULL (2012). A Computer Program for Progressive Collapse Analysis of Ship Hulls, Proteus Engineering, Stevensville, MD, USA (www.maestromarine.com).
  • ?Ahmad, Z., & Thambiratnam, D. P. (2009). Crushing response of foam-filled conical tubes under quasi-static axial loading. Materials & design, 30(7), 2393-2403.