박사

GEANT4 Monte Carlo 시뮬레이션을 이용한 환자 선량분포의 예측 = Estimation of the patient dose distributions using GEANT4 Monte Carlo simulation

김형동 2015년
논문상세정보
' GEANT4 Monte Carlo 시뮬레이션을 이용한 환자 선량분포의 예측 = Estimation of the patient dose distributions using GEANT4 Monte Carlo simulation' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • dicom
  • dose distributions
  • geant4
  • monte carlo
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
63 0

0.0%

' GEANT4 Monte Carlo 시뮬레이션을 이용한 환자 선량분포의 예측 = Estimation of the patient dose distributions using GEANT4 Monte Carlo simulation' 의 참고문헌

  • https://www-nds.iaea.org/phsp/phsp.htmlx.
  • http://www.geant4.org/geant4/.
  • http://physics.nist.gov/PhysRefData/Star/Text/ESTAR.html.
  • http://en.wikipedia.org/wiki/Monte_Carlo_method.
  • http://en.wikipedia.org/wiki/DICOM.
  • W.R. Nelson, H. Hirayamal, and D.W. Rogersfbl, THE EGS4 CODE SYSTEM (CA, 1985).
  • W. Schneider, T. Bortfeld, and W. Schlegel, “Correlation between CT numbers and tissue parameters needed for Monte Carlo simulations of clinical dose distributions,” Phys. Med. Biol. 45(2), 459?478 (2000).
  • T. Krieger and O. a Sauer, “Monte Carlo- versus pencil-beam-/collapsed-cone-dose calculation in a heterogeneous multi-layer phantom.,” Phys. Med. Biol. 50(5), 859?68 (2005).
  • S. Agostinelli et al., “Geant4?a simulation toolkit,” Nucl. Instruments Methods Phys. Res. Sect. A Accel. Spectrometers, Detect. Assoc. Equip. 506(3), 250?303 (2003).
  • R. Eckhardt, “Stan Ulam, John von Neumann, and the Monte Carlo method,” Los Alamos Sci. Spec. Issue (15), 131 ? 137 (1987).
  • R. Doucet, M. Olivares, F. DeBlois, E.B. Podgorsak, I. Kawrakow, and J. Seuntjens, “Comparison of measured and Monte Carlo calculated dose distributions in inhomogeneous phantoms in clinical electron beams,” Phys. Med. Biol. 48(15), 2339?2354 (2003).
  • P.R. Almond et al., “AAPM’s TG-51 protocol for clinical reference dosimetry of high-energy photon and electron beams,” Med. PHYSICS-LANCASTER PA- 26, 1847?1870 (1999).
  • P. Carrasco et al., “Comparison of dose calculation algorithms in phantoms with lung equivalent heterogeneities under conditions of lateral electronic disequilibrium,” Med. Phys. 31(10), 2899 (2004).
  • O. Chibani and C.-M.C. Ma, “Photonuclear dose calculations for high-energy photon beams from Siemens and Varian linacs,” Med. Phys. 30(8), 1990 (2003).
  • N. Tyagi, A. Bose, and I.J. Chetty, “Implementation of the DPM Monte Carlo code on a parallel architecture for treatment planning applications,” Med. Phys. 31(9), 2721 (2004).
  • N. Reynaert et al., “Monte Carlo treatment planning for photon and electron beams,” Radiat. Phys. Chem. 76(4), 643?686 (2007).
  • N. Metropolis, “The beginning of the Monte Carlo method,” Los Alamos Sci. 15(1987 Special Issue dedicated to Stanislaw Ulam), 125?130 (1987).
  • N. Metropolis and S. Ulam, Monte Carlo method, J. Am. Stat. Assoc. 44(247), 335 (1949).
  • M.R. Bieda, J.A. Antolak, and K.R. Hogstrom, “The effect of scattering foil parameters on electron-beam Monte Carlo calculations,” Med. Phys. 28(12), 2527 (2001).
  • M.B. Tacke et al., “Assessment of a new multileaf collimator concept using GEANT4 Monte Carlo simulations,” Med. Phys. 33(4), 1125?1132 (2006).
  • M.A. Cort s-Giraldo, J.M. Quesada, M.I. Gallardo, and R. Capote, “An implementation to read and write IAEA phase-space files in GEANT4-based simulations.,” Int. J. Radiat. Biol. 88(1-2), 200?8 (2012).
  • M. Miften, M. Wiesmeyer, A. Kapur, and C.M. Ma, “Comparison of RTP dose distributions in heterogeneous phantoms with the BEAM Monte Carlo simulation system.,” J. Appl. Clin. Med. Phys. 2(1), 21?31 (2001).
  • M. Fippel, “Efficient particle transport simulation through beam modulating devices for Monte Carlo treatment planning,” Med. Phys. 31(5), 1235 (2004).
  • M. Fippel, W. Laub, B. Huber, and F. N sslin, “Experimental investigation of a fast Monte Carlo photon beam dose calculation algorithm,” Phys. Med. Biol. 44(12), 3039?3054 (1999).
  • M. Fippel, I. Kawrakow, and K. Friedrich, “Electron beam dose calculations with the VMC algorithm and the verification data of the NCI working group,” Phys. Med. Biol. 42(3), 501?520 (1997).
  • M. Fippel, F. Haryanto, O. Dohm, F. N sslin, and S. Kriesen, “A virtual photon energy fluence model for Monte Carlo dose calculation,” Med. Phys. 30(3), 301 (2003).
  • M. Berger, “Monte Carlo calculation of the penetration and diffusion of fast charged particles,” Methods Comput. Phys. (1963).
  • L. Grevillot, T. Frisson, D. Maneval, N. Zahra, J.-N. Badel, and D. Sarrut, “Simulation of a 6 MV Elekta Precise Linac photon beam using GATE/GEANT4.,” Phys. Med. Biol. 56(4), 903?18 (2011).
  • L. Eyges, “Multiple Scattering with Energy Loss,” Phys. Rev. 74(10), 1534?1535 (1948).
  • L. Archambault et al., “Overview of Geant4 Applications in Medical Physics,” 00(C), 7?9 (2003).
  • K.R. Hogstrom, R.A. Boyd, J.A. Antolak, M.M. Svatos, B.A. Faddegon, and J.G. Rosenman, “Dosimetry of a prototype retractable eMLC for fixed-beam electron therapy,” Med. Phys. 31(3), 443 (2004).
  • K. Nakamura, “Review of Particle Physics,” J. Phys. G Nucl. Part. Phys. 37(7A), 075021 (2010).
  • J.S. Hendricks et al., MCNPX EXTENSIONS.
  • J.J. DeMarco, T.D. Solberg, and J.B. Smathers, “A CT-based Monte Carlo simulation tool for dosimetry planning and analysis,” Med. Phys. 25(1), 1 (1998).
  • J.E. Cygler, G.M. Daskalov, G.H. Chan, and G.X. Ding, “Evaluation of the first commercial Monte Carlo dose calculation engine for electron beam treatment planning,” Med. Phys. 31(1), 142 (2004).
  • J.-F. Carrier, L. Archambault, L. Beaulieu, and R. Roy, “Validation of GEANT4, an object-oriented Monte Carlo toolkit, for simulations in medical physics,” Med. Phys. 31(3), 484 (2004).
  • J. Sempau, E. Acosta, J. Baro, J.M. Fern ndez-Varea, and F. Salvat, “An algorithm for Monte Carlo simulation of coupled electron-photon transport,” Nucl. Instruments Methods Phys. Res. Sect. B Beam Interact. with Mater. Atoms 132(3), 377?390 (1997).
  • J. Seco and F. Verhaegen, Monte Carlo Techniques in Radiation Therapy (CRC Press, 2013).
  • J. Kang and D.J. Lee, “Development of DICOM Convert Program for the Geant4 Monte Carlo Simulation of the Radiotherapy,” Prog. Med. Phys. 24(4), 259 (2013).
  • J. Allison et al., “Geant4 Developments and Applications,” 53(1), 270?278 (2006).
  • International atomic energy agency, Radiation Oncology Physics: A Handbook for teachers and stuents (VIENNA, 2005).
  • ICRU Report 24, Determination of Absorbed Dose in a Patient Irradiated by Beams of X or Gamma Rays in Radiotherapy Procedures (Washington, DC, 1976).
  • I.M. Gagn and S. Zavgorodni, “Evaluation of the analytical anisotropic algorithm in an extreme water-lung interface phantom using Monte Carlo dose calculations.,” J. Appl. Clin. Med. Phys. 8(1), 33?46 (2007).
  • I.J. Chetty, P.M. Charland, N. Tyagi, D.L. McShan, B.A. Fraass, and A.F. Bielajew, “Photon beam relative dose validation of the DPM Monte Carlo code in lungequivalent media,” Med. Phys. 30(4), 563 (2003).
  • I.J. Chetty et al., “Report of the AAPM Task Group No. 105: Issues associated with clinical implementation of Monte Carlo-based photon and electron external beam treatment planning,” Med. Phys. 34(12), 4818 (2007).
  • I. Kawrakow, “On the efficiency of photon beam treatment head simulations,” Med. Phys. 32(7), 2320 (2005).
  • I. Kawrakow, “Accurate condensed history Monte Carlo simulation of electron transport. I. EGSnrc, the new EGS4 version,” Med. Phys. 27(3), 485 (2000).
  • I. Kawrakow, “3D electron dose calculation using a Voxel based Monte Carlo algorithm (VMC),” Med. Phys. 23(4), 445 (1996).
  • I. Kawrakow, D.W.O. Rogers, and B.R.B. Walters, “Large efficiency improvements in BEAMnrc using directional bremsstrahlung splitting,” Med. Phys. 31(10), 2883 (2004).
  • I. Kawrakow and M. Fippel, “VMC++, a MC algorithm optimized for electron and photon beam dose calculations for RTP,” in Proc. 22nd Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (Cat. No.00CH37143)(IEEE, 2000), pp. 1490?1493.
  • I. Kawrakow and M. Fippel, “Investigation of variance reduction techniques for Monte Carlo photon dose calculation using XVMC,” Phys. Med. Biol. 45(8), 2163? 2183 (2000).
  • I. Kawrakow and D.W.O. Rogers, The EGSnrc Code System : Monte Carlo Simulation of Electron and Photon Transport (2003).
  • H.D. Kim, B.Y. Kim, E.C. Kim, S.M. Yun, J.K. Kang, and S.K. Kim, “Comparison of dose distributions for Hounsfield number conversion methods in GEANT4,” J. Korean Phys. Soc. 64(12), 1912?1918 (2014).
  • H. Neuenschwander, T.R. Mackie, and P.J. Reckwerdt, “MMC-a high-performance Monte Carlo code for electron beam treatment planning,” Phys. Med. Biol. 40(4), 543?574 (1995).
  • H. Neuenschwander and E.J. Born, “A macro Monte Carlo method for electron beam dose calculations,” Phys. Med. Biol. 37(1), 107?125 (1992).
  • H. Jiang, J. Seco, and H. Paganetti, “Effects of Hounsfield number conversion on CT based proton Monte Carlo dose calculations,” Med. Phys. 34(4), 1439 (2007).
  • H. Jiang and H. Paganetti, “Adaptation of GEANT4 to Monte Carlo dose calculations based on CT data,” Med. Phys. 31(10), 2811 (2004).
  • G. Collaboration, “Geant4 User’s Guide for Application Developers,” (December), (2013).
  • F.M. Khan, The Physics of Radiation Therapy (2010).
  • F.C.P. du Plessis, C.A. Willemse, M.G. Lo?tter, and L. Goedhals, “The indirect use of CT numbers to establish material properties needed for Monte Carlo calculation of dose distributions in patients,” Med. Phys. 25(7), 1195?1201 (1998).
  • F. Verhaegen and S. Devic, “Sensitivity study for CT image use in Monte Carlo treatment planning.,” Phys. Med. Biol. 50(5), 937?46 (2005).
  • F. Verhaegen and J. Seuntjens, “Monte Carlo modelling of external radiotherapy photon beams,” Phys. Med. Biol. 48(21), R107?R164 (2003).
  • E.J. Hall and A.J. Giaccia, Radiobiology for the Radiologist (2012).
  • E. Poon and F. Verhaegen, “Accuracy of the photon and electron physics in GEANT4 for radiotherapy applications,” Med. Phys. 32(6), 1696 (2005).
  • D.W.O. Rogers, “BEAM: A Monte Carlo code to simulate radiotherapy treatment units,” Med. Phys. 22(5), 503 (1995).
  • D.W.. Rogers, C.M. Ma, G.X. Ding, B.R.B. Walters, D. Sheikh-Bagheri, and G.G. Zhang, “BEAMnrc users manual,” .
  • D. Sheikh-Bagheri and D.W.O. Rogers, “Sensitivity of megavoltage photon beam Monte Carlo simulations to electron beam and other parameters,” Med. Phys. 29(3), 379 (2002).
  • C.M. Ma, B.A. Faddegon, D.W.O. Rogers, and T.R. Mackie, “Accurate characterization of Monte Carlo calculated electron beams for radiotherapy,” Med. Phys. 24(3), 401 (1997).
  • C.L. Hartmann Siantar et al., “Description and dosimetric verification of the PEREGRINE Monte Carlo dose calculation system for photon beams incident on a water phantom,” Med. Phys. 28(7), 1322 (2001).
  • C.-M. Ma, “Characterization of computer simulated radiotherapy beams for Monte- Carlo treatment planning,” Radiat. Phys. Chem. 53(3), 329?344 (1998).
  • C.-M. Ma et al., “Clinical implementation of a Monte Carlo treatment planning system,” Med. Phys. 26(10), 2133 (1999).
  • C.-M. Ma et al., “A Monte Carlo dose calculation tool for radiotherapy treatment planning,” Phys. Med. Biol. 47(10), 1671?1689 (2002).
  • C.-M. Ma and S.B. Jiang, “Monte Carlo modelling of electron beams from medical accelerators,” Phys. Med. Biol. 44(12), R157?R189 (1999).
  • B.J. Mijnheer, J.J. Battermann, and A. Wambersie, “What degree of accuracy is required and can be achieved in photon and neutron therapy?,” Radiother. Oncol. 8(3), 237?252 (1987).
  • B.A. Fraass, J. Smathers, and J. Deye, “Summary and recommendations of a National Cancer Institute workshop on issues limiting the clinical use of Monte Carlo dose calculation algorithms for megavoltage external beam radiation therapy,” Med. Phys. 30(12), 3206?3216 (2003).
  • B.A. Faddegon, P. O’Brien, and D.L.D. Mason, “The flatness of Siemens linear accelerator x-ray fields,” Med. Phys. 26(2), 220?228 (1999).
  • B.A. Faddegon and I. Blevis, “Electron spectra derived from depth dose distributions,” Med. Phys. 27(3), 514 (2000).
  • B. Vanderstraeten et al., “Conversion of CT numbers into tissue parameters for Monte Carlo dose calculations: a multi-centre study.,” Phys. Med. Biol. 52(3), 539?62 (2007).
  • B. Fraass et al., “American Association of Physicists in Medicine Radiation Therapy Committee Task Group 53: Quality assurance for clinical radiotherapy treatment planning,” Med. Phys. 25(10), 1773 (1998).
  • B. Faddegon, E. Schreiber, and X. Ding, “Monte Carlo simulation of large electron fields.,” Phys. Med. Biol. 50(5), 741?53 (2005).
  • B. Faddegon, B. Egley, and T. Steinberg, “Comparison of beam characteristics of a gold x-ray target and a tungsten replacement target,” Med. Phys. 31(1), 91 (2004).
  • A. Tzedakis, J.E. Damilakis, M. Mazonakis, J. Stratakis, H. Varveris, and N. Gourtsoyiannis, “Influence of initial electron beam parameters on Monte Carlo calculated absorbed dose distributions for radiotherapy photon beams,” Med. Phys. 31(4), 907 (2004).
  • A. Leal et al., “Monte Carlo simulation of complex radiotherapy treatments,” Comput. Sci. Eng. 6(4), 60?68 (2004).
  • A. Catala, “Reconstruction of 12 MV bremsstrahlung spectra from measured transmission data by direct resolution of the numeric system AF=T,” Med. Phys. 22(1), 3 (1995).
  • A. Ahnesjo?, L. Weber, A. Murman, M. Saxner, I. Thorslund, and E. Traneus, “Beam modeling and verification of a photon beam multisource model,” Med. Phys. 32(6), 1722 (2005).
  • A. Ahnesjo and P. Andreo, “Determination of effective bremsstrahlung spectra and electron contamination for photon dose calculations,” Phys. Med. Biol. 34(10), 1451? 1464 (1989).
  • A. Ahnesjo and A. Trepp, “Acquisition of the effective lateral energy fluence distribution for photon beam dose calculations by convolution models,” Phys. Med. Biol. 36(7), 973?985 (1991).
  • ?N. Papanikolaou et al., “Tissue inhomogeneity corrections for megavoltage photon beams,” AAPM Task Gr. 65, 1?142 (2004).