박사

Cholinergic Degeneration and Stress Exacerbate Aging-Related Cognitive Decline : 노화에 따른 콜리너직 시스템 손상과 스트레스에 상승적 인지기능 저하 효과

이선영 2015년
논문상세정보
' Cholinergic Degeneration and Stress Exacerbate Aging-Related Cognitive Decline : 노화에 따른 콜리너직 시스템 손상과 스트레스에 상승적 인지기능 저하 효과' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • aging
  • catalytic subunit of protein kinase a
  • cholinergic neuron
  • glucocorticoid receptor
  • nuclear factor-kappa b
  • spatial memory
  • stress
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
1,679 0

0.0%

' Cholinergic Degeneration and Stress Exacerbate Aging-Related Cognitive Decline : 노화에 따른 콜리너직 시스템 손상과 스트레스에 상승적 인지기능 저하 효과' 의 참고문헌

  • Zhong, H., SuYang, H., Erdjument-Bromage, H., Tempst, P., and Ghosh, S. (1997). The transcriptional activity of NF-kappaB is regulated by the IkappaBassociated PKAc subunit through a cyclic AMP-independent mechanism. Cell 89, 413-424.
  • Yang-Yen, H.F., Chambard, J.C., Sun, Y.L., Smeal, T., Schmidt, T.J., Drouin, J., and Karin, M. (1990). Transcriptional interference between c-Jun and the glucocorticoid receptor: mutual inhibition of DNA binding due to direct protein-protein interaction. Cell 62, 1205-1215.
  • Yan, Q., and Johnson, E.M., Jr. (1989). Immunohistochemical localization and biochemical characterization of nerve growth factor receptor in adult rat brain. The Journal of comparative neurology 290, 585-598.
  • Yamamoto, Y., and Gaynor, R.B. (2004). IkappaB kinases: key regulators of the NFkappaB pathway. Trends in biochemical sciences 29, 72-79.
  • Woolf, N.J. (1991). Cholinergic systems in mammalian brain and spinal cord. Progress in neurobiology 37, 475-524.
  • Wilson, R.S., Evans, D.A., Bienias, J.L., Mendes de Leon, C.F., Schneider, J.A., and Bennett, D.A. (2003). Proneness to psychological distress is associated with risk of Alzheimer's disease. Neurology 61, 1479-1485.
  • Wilson, R.S., Arnold, S.E., Schneider, J.A., Kelly, J.F., Tang, Y., and Bennett, D.A. (2006). Chronic psychological distress and risk of Alzheimer's disease in old age. Neuroepidemiology 27, 143-153.
  • Willard, L.B., Hauss-Wegrzyniak, B., and Wenk, G.L. (1999). Pathological and biochemical consequences of acute and chronic neuroinflammation within the basal forebrain cholinergic system of rats. Neuroscience 88, 193-200.
  • Wiley, R.G., Berbos, T.G., Deckwerth, T.L., Johnson, E.M., Jr., and Lappi, D.A. (1995). Destruction of the cholinergic basal forebrain using immunotoxin to rat NGF receptor: modeling the cholinergic degeneration of Alzheimer's disease. Journal of the neurological sciences 128, 157-166.
  • Wiley, R.G. (1992). Neural lesioning with ribosome-inactivating proteins: suicide transport and immunolesioning. Trends in neurosciences 15, 285-290.
  • Whitehouse, P.J., Price, D.L., Struble, R.G., Clark, A.W., Coyle, J.T., and Delon, M.R. (1982). Alzheimer's disease and senile dementia: loss of neurons in the basal forebrain. Science 215, 1237-1239.
  • Walsh, T.J., Kelly, R.M., Dougherty, K.D., Stackman, R.W., Wiley, R.G., and Kutscher, C.L. (1995). Behavioral and neurobiological alterations induced by the immunotoxin 192-IgG-saporin: cholinergic and non-cholinergic effects following i.c.v. injection. Brain research 702, 233-245.
  • Vyas, S., and Maatouk, L. (2013). Contribution of glucocorticoids and glucocorticoid receptors to the regulation of neurodegenerative processes. CNS & neurological disorders drug targets 12, 1175-1193.
  • Viatour, P., Merville, M.P., Bours, V., and Chariot, A. (2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends in biochemical sciences 30, 43-52.
  • Unlap, M.T., and Jope, R.S. (1997). Dexamethasone attenuates NF-kappa B DNA binding activity without inducing I kappa B levels in rat brain in vivo. Brain research Molecular brain research 45, 83-89.
  • Tsigos, C., and Chrousos, G.P. (2002). Hypothalamic-pituitary-adrenal axis, neuroendocrine factors and stress. Journal of psychosomatic research 53, 865- 871.
  • Surh, Y.J., Chun, K.S., Cha, H.H., Han, S.S., Keum, Y.S., Park, K.K., and Lee, S.S. (2001). Molecular mechanisms underlying chemopreventive activities of antiinflammatory phytochemicals: down-regulation of COX-2 and iNOS through suppression of NF-kappa B activation. Mutation research 480-481, 243-268.
  • Strada, O., Vyas, S., Hirsch, E.C., Ruberg, M., Brice, A., Agid, Y., and Javoy-Agid, F. (1992). Decreased choline acetyltransferase mRNA expression in the nucleus basalis of Meynert in Alzheimer disease: an in situ hybridization study. Proceedings of the National Academy of Sciences of the United States of America 89, 9549-9553.
  • Steinberg, R.A., Cauthron, R.D., Symcox, M.M., and Shuntoh, H. (1993). Autoactivation of catalytic (C alpha) subunit of cyclic AMP-dependent protein kinase by phosphorylation of threonine 197. Molecular and cellular biology 13, 2332-2341.
  • Squire, L.R., and Zola, S.M. (1996). Structure and function of declarative and nondeclarative memory systems. Proceedings of the National Academy of Sciences of the United States of America 93, 13515-13522.
  • Shelton, R.C., Mainer, D.H., and Sulser, F. (1996). cAMP-dependent protein kinase activity in major depression. The American journal of psychiatry 153, 1037- 1042.
  • Scheff, S.W., Scott, S.A., and DeKosky, S.T. (1991). Quantitation of synaptic density in the septal nuclei of young and aged Fischer 344 rats. Neurobiology of aging 12, 3-12.
  • Sapolsky, R.M., Krey, L.C., and McEwen, B.S. (1986). The neuroendocrinology of stress and aging: the glucocorticoid cascade hypothesis. Endocrine reviews 7, 284-301.
  • Sapolsky, R.M., Krey, L.C., and McEwen, B.S. (1984). Glucocorticoid-sensitive hippocampal neurons are involved in terminating the adrenocortical stress response. Proceedings of the National Academy of Sciences of the United States of America 81, 6174-6177.
  • Sapolsky, R.M., Krey, L.C., and McEwen, B.S. (1983). The adrenocortical stressresponse in the aged male rat: impairment of recovery from stress. Experimental gerontology 18, 55-64.
  • Sapolsky, R.M. (1992). Do glucocorticoid concentrations rise with age in the rat? Neurobiology of aging 13, 171-174.
  • Rowe, J.W., and Kahn, R.L. (1987). Human aging: usual and successful. Science 237, 143-149.
  • Rossner, S., Schliebs, R., Hartig, W., and Bigl, V. (1995). 192IGG-saporin-induced selective lesion of cholinergic basal forebrain system: neurochemical effects on cholinergic neurotransmission in rat cerebral cortex and hippocampus. Brain research bulletin 38, 371-381.
  • Rogers, J. (1995). Inflammation as a pathogenic mechanism in Alzheimer's disease. Arzneimittel-Forschung 45, 439-442.
  • Ridder, S., Chourbaji, S., Hellweg, R., Urani, A., Zacher, C., Schmid, W., Zink, M., Hortnagl, H., Flor, H., Henn, F.A., et al. (2005). Mice with genetically altered glucocorticoid receptor expression show altered sensitivity for stress-induced depressive reactions. The Journal of neuroscience : the official journal of the Society for Neuroscience 25, 6243-6250.
  • Rapp, P.R., and Gallagher, M. (1996). Preserved neuron number in the hippocampus of aged rats with spatial learning deficits. Proceedings of the National Academy of Sciences of the United States of America 93, 9926-9930.
  • Rapp, P.R., and Amaral, D.G. (1992). Individual differences in the cognitive and neurobiological consequences of normal aging. Trends in neurosciences 15, 340-345.
  • Rangarajan, P.N., Umesono, K., and Evans, R.M. (1992). Modulation of glucocorticoid receptor function by protein kinase A. Mol Endocrinol 6, 1451- 1457.
  • Quan, N., He, L., Lai, W., Shen, T., and Herkenham, M. (2000). Induction of IkappaBalpha mRNA expression in the brain by glucocorticoids: a negative feedback mechanism for immune-to-brain signaling. The Journal of neuroscience : the official journal of the Society for Neuroscience 20, 6473- 6477.
  • Pratt, W.B., Silverstein, A.M., and Galigniana, M.D. (1999). A model for the cytoplasmic trafficking of signalling proteins involving the hsp90-binding immunophilins and p50cdc37. Cellular signalling 11, 839-851.
  • Pizzo, D.P., Waite, J.J., Thal, L.J., and Winkler, J. (1999). Intraparenchymal infusions of 192 IgG-saporin: development of a method for selective and discrete lesioning of cholinergic basal forebrain nuclei. Journal of neuroscience methods 91, 9-19.
  • Oitzl, M.S., de Kloet, E.R., Joels, M., Schmid, W., and Cole, T.J. (1997). Spatial learning deficits in mice with a targeted glucocorticoid receptor gene disruption. The European journal of neuroscience 9, 2284-2296.
  • Oitzl, M.S., Reichardt, H.M., Joels, M., and de Kloet, E.R. (2001). Point mutation in the mouse glucocorticoid receptor preventing DNA binding impairs spatial memory. Proceedings of the National Academy of Sciences of the United States of America 98, 12790-12795.
  • Ohman, L., Nordin, S., Bergdahl, J., Slunga Birgander, L., and Stigsdotter Neely, A. (2007). Cognitive function in outpatients with perceived chronic stress. Scandinavian journal of work, environment & health 33, 223-232.
  • O'Brien, J.T., Ames, D., Schweitzer, I., Colman, P., Desmond, P., and Tress, B. (1996). Clinical and magnetic resonance imaging correlates of hypothalamicpituitary- adrenal axis function in depression and Alzheimer's disease. The British journal of psychiatry : the journal of mental science 168, 679-687.
  • Nyakas, C., Luiten, P.G., Spencer, D.G., and Traber, J. (1987). Detailed projection patterns of septal and diagonal band efferents to the hippocampus in the rat with emphasis on innervation of CA1 and dentate gyrus. Brain research bulletin 18, 533-545.
  • Nikzad, S., Vafaei, A.A., Rashidy-Pour, A., and Haghighi, S. (2011). Systemic and intrahippocampal administrations of the glucocorticoid receptor antagonist RU38486 impairs fear memory reconsolidation in rats. Stress 14, 459-464.
  • Nemeroff, C.B., and Vale, W.W. (2005). The neurobiology of depression: inroads to treatment and new drug discovery. The Journal of clinical psychiatry 66 Suppl 7, 5-13.
  • Neary, D., Snowden, J.S., Mann, D.M., Bowen, D.M., Sims, N.R., Northen, B., Yates, P.O., and Davison, A.N. (1986). Alzheimer's disease: a correlative study. Journal of neurology, neurosurgery, and psychiatry 49, 229-237.
  • Murphy, E.K., Spencer, R.L., Sipe, K.J., and Herman, J.P. (2002). Decrements in nuclear glucocorticoid receptor (GR) protein levels and DNA binding in aged rat hippocampus. Endocrinology 143, 1362-1370.
  • Munhoz, C.D., Lepsch, L.B., Kawamoto, E.M., Malta, M.B., Lima Lde, S., Avellar, M.C., Sapolsky, R.M., and Scavone, C. (2006). Chronic unpredictable stress exacerbates lipopolysaccharide-induced activation of nuclear factor-kappaB in the frontal cortex and hippocampus via glucocorticoid secretion. The Journal of neuroscience : the official journal of the Society for Neuroscience 26, 3813- 3820.
  • Muir, J.L., Everitt, B.J., and Robbins, T.W. (1994). AMPA-induced excitotoxic lesions of the basal forebrain: a significant role for the cortical cholinergic system in attentional function. The Journal of neuroscience : the official journal of the Society for Neuroscience 14, 2313-2326.
  • Morris, R.G., Garrud, P., Rawlins, J.N., and O'Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature 297, 681-683.
  • Morano, M.I., Vazquez, D.M., and Akil, H. (1994). The role of the hippocampal mineralocorticoid and glucocorticoid receptors in the hypothalamo-pituitaryadrenal axis of the aged Fisher rat. Molecular and cellular neurosciences 5, 400- 412.
  • Montaron, M.F., Drapeau, E., Dupret, D., Kitchener, P., Aurousseau, C., Le Moal, M., Piazza, P.V., and Abrous, D.N. (2006). Lifelong corticosterone level determines age-related decline in neurogenesis and memory. Neurobiology of aging 27, 645-654.
  • Mizoguchi, K., Yuzurihara, M., Ishige, A., Sasaki, H., and Tabira, T. (2001). Effect of chronic stress on cholinergic transmission in rat hippocampus. Brain research 915, 108-111.
  • Mizoguchi, K., Ishige, A., Aburada, M., and Tabira, T. (2003). Chronic stress attenuates glucocorticoid negative feedback: involvement of the prefrontal cortex and hippocampus. Neuroscience 119, 887-897.
  • Mizoguchi, K., Ikeda, R., Shoji, H., Tanaka, Y., Maruyama, W., and Tabira, T. (2009). Aging attenuates glucocorticoid negative feedback in rat brain. Neuroscience 159, 259-270.
  • Mesulam, M.M., Mufson, E.J., Wainer, B.H., and Levey, A.I. (1983). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10, 1185-1201.
  • Meffert, M.K., and Baltimore, D. (2005). Physiological functions for brain NFkappaB. Trends in neurosciences 28, 37-43.
  • McKinney, M., Coyle, J.T., and Hedreen, J.C. (1983). Topographic analysis of the innervation of the rat neocortex and hippocampus by the basal forebrain cholinergic system. The Journal of comparative neurology 217, 103-121.
  • McKay, L.I., and Cidlowski, J.A. (1998). Cross-talk between nuclear factor-kappa B and the steroid hormone receptors: mechanisms of mutual antagonism. Mol Endocrinol 12, 45-56.
  • McGeer, P.L., McGeer, E.G., Suzuki, J., Dolman, C.E., and Nagai, T. (1984). Aging, Alzheimer's disease, and the cholinergic system of the basal forebrain. Neurology 34, 741-745.
  • McGeer, P.L., Akiyama, H., Itagaki, S., and McGeer, E.G. (1989). Immune system response in Alzheimer's disease. The Canadian journal of neurological sciences Le journal canadien des sciences neurologiques 16, 516-527.
  • Masugi, F., Ogihara, T., Sakaguchi, K., Otsuka, A., Tsuchiya, Y., Morimoto, S., Kumahara, Y., Saeki, S., and Nishide, M. (1989). High plasma levels of cortisol in patients with senile dementia of the Alzheimer's type. Methods and findings in experimental and clinical pharmacology 11, 707-710.
  • Mann, D.M., Yates, P.O., and Marcyniuk, B. (1984). A comparison of changes in the nucleus basalis and locus caeruleus in Alzheimer's disease. Journal of neurology, neurosurgery, and psychiatry 47, 201-203.
  • Madrigal, J.L., Moro, M.A., Lizasoain, I., Lorenzo, P., Castrillo, A., Bosca, L., and Leza, J.C. (2001). Inducible nitric oxide synthase expression in brain cortex after acute restraint stress is regulated by nuclear factor kappaB-mediated mechanisms. Journal of neurochemistry 76, 532-538.
  • Madrigal, J.L., Garcia-Bueno, B., Caso, J.R., Perez-Nievas, B.G., and Leza, J.C. (2006). Stress-induced oxidative changes in brain. CNS & neurological disorders drug targets 5, 561-568.
  • Lupien, S.J., de Leon, M., de Santi, S., Convit, A., Tarshish, C., Nair, N.P., Thakur, M., McEwen, B.S., Hauger, R.L., and Meaney, M.J. (1998). Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nature neuroscience 1, 69-73.
  • Lupien, S., Lecours, A.R., Lussier, I., Schwartz, G., Nair, N.P., and Meaney, M.J. (1994). Basal cortisol levels and cognitive deficits in human aging. The Journal of neuroscience : the official journal of the Society for Neuroscience 14, 2893- 2903.
  • Lund, P.K., Hoyt, E.C., Bizon, J., Smith, D.R., Haberman, R., Helm, K., and Gallagher, M. (2004). Transcriptional mechanisms of hippocampal aging. Experimental gerontology 39, 1613-1622.
  • Luine, V.N., Renner, K.J., Heady, S., and Jones, K.J. (1986). Age and sex-dependent decreases in ChAT in basal forebrain nuclei. Neurobiology of aging 7, 193-198.
  • Lim, C.S., Kim, Y.J., Hwang, Y.K., Banuelos, C., Bizon, J.L., and Han, J.S. (2012). Decreased interactions in protein kinase A-glucocorticoid receptor signaling in the hippocampus after selective removal of the basal forebrain cholinergic input. Hippocampus 22, 455-465.
  • Lim, C.S., Hwang, Y.K., Kim, D., Cho, S.H., Banuelos, C., Bizon, J.L., and Han, J.S. (2011). Increased interactions between PKA and NF-kappaB signaling in the hippocampus following loss of cholinergic input. Neuroscience 192, 485-493.
  • Levy, M.L., Cummings, J.L., and Kahn-Rose, R. (1999). Neuropsychiatric symptoms and cholinergic therapy for Alzheimer's disease. Gerontology 45 Suppl 1, 15-22.
  • Larkfors, L., Ebendal, T., Whittemore, S.R., Persson, H., Hoffer, B., and Olson, L. (1987). Decreased level of nerve growth factor (NGF) and its messenger RNA in the aged rat brain. Brain research 427, 55-60.
  • Lappi, D.A., Esch, F.S., Barbieri, L., Stirpe, F., and Soria, M. (1985). Characterization of a Saponaria officinalis seed ribosome-inactivating protein: immunoreactivity and sequence homologies. Biochemical and biophysical research communications 129, 934-942.
  • Lamour, Y., Dutar, P., and Jobert, A. (1982). Topographic organization of basal forebrain neurons projecting to the rat cerebral cortex. Neuroscience letters 34, 117-122.
  • Korsching, S., Auburger, G., Heumann, R., Scott, J., and Thoenen, H. (1985). Levels of nerve growth factor and its mRNA in the central nervous system of the rat correlate with cholinergic innervation. The EMBO journal 4, 1389-1393.
  • Kopp, E.B., and Ghosh, S. (1995). NF-kappa B and rel proteins in innate immunity. Advances in immunology 58, 1-27.
  • Koo, J.W., Russo, S.J., Ferguson, D., Nestler, E.J., and Duman, R.S. (2010). Nuclear factor-kappaB is a critical mediator of stress-impaired neurogenesis and depressive behavior. Proceedings of the National Academy of Sciences of the United States of America 107, 2669-2674.
  • Koh, S., and Loy, R. (1988). Age-related loss of nerve growth factor sensitivity in rat basal forebrain neurons. Brain research 440, 396-401.
  • Kim, J.J., Song, E.Y., and Kosten, T.A. (2006). Stress effects in the hippocampus: synaptic plasticity and memory. Stress 9, 1-11.
  • Kaltschmidt, B., Ndiaye, D., Korte, M., Pothion, S., Arbibe, L., Prullage, M., Pfeiffer, J., Lindecke, A., Staiger, V., Israel, A., et al. (2006). NF-kappaB regulates spatial memory formation and synaptic plasticity through protein kinase A/CREB signaling. Molecular and cellular biology 26, 2936-2946.
  • Johnson, E.M., Jr., Taniuchi, M., Clark, H.B., Springer, J.E., Koh, S., Tayrien, M.W., and Loy, R. (1987). Demonstration of the retrograde transport of nerve growth factor receptor in the peripheral and central nervous system. The Journal of neuroscience : the official journal of the Society for Neuroscience 7, 923-929.
  • Janis, L.S., Glasier, M.M., Fulop, Z., and Stein, D.G. (1998). Intraseptal injections of 192 IgG saporin produce deficits for strategy selection in spatial-memory tasks. Behavioural brain research 90, 23-34.
  • Jacobson, L., and Sapolsky, R. (1991). The role of the hippocampus in feedback regulation of the hypothalamic-pituitary-adrenocortical axis. Endocrine reviews 12, 118-134.
  • Issa, A.M., Rowe, W., Gauthier, S., and Meaney, M.J. (1990). Hypothalamicpituitary- adrenal activity in aged, cognitively impaired and cognitively unimpaired rats. The Journal of neuroscience : the official journal of the Society for Neuroscience 10, 3247-3254.
  • Hyman, S.E. (2009). How adversity gets under the skin. Nature neuroscience 12, 241-243.
  • Hortnagl, H., Berger, M.L., Havelec, L., and Hornykiewicz, O. (1993). Role of glucocorticoids in the cholinergic degeneration in rat hippocampus induced by ethylcholine aziridinium (AF64A). The Journal of neuroscience : the official journal of the Society for Neuroscience 13, 2939-2945.
  • Herman, J.P., Larson, B.R., Speert, D.B., and Seasholtz, A.F. (2001). Hypothalamopituitary- adrenocortical dysregulation in aging F344/Brown-Norway F1 hybrid rats. Neurobiology of aging 22, 323-332.
  • Helm, K.A., Ziegler, D.R., and Gallagher, M. (2004). Habituation to stress and dexamethasone suppression in rats with selective basal forebrain cholinergic lesions. Hippocampus 14, 628-635.
  • Helm, K.A., Han, J.S., and Gallagher, M. (2002). Effects of cholinergic lesions produced by infusions of 192 IgG-saporin on glucocorticoid receptor mRNA expression in hippocampus and medial prefrontal cortex of the rat. Neuroscience 115, 765-774.
  • Hatzinger, M., Z'Brun, A., Hemmeter, U., Seifritz, E., Baumann, F., Holsboer- Trachsler, E., and Heuser, I.J. (1995). Hypothalamic-pituitary-adrenal system function in patients with Alzheimer's disease. Neurobiology of aging 16, 205- 209.
  • Haske, T., Nakao, M., and Moudgil, V.K. (1994). Phosphorylation of immunopurified rat liver glucocorticoid receptor by the catalytic subunit of cAMP-dependent protein kinase. Molecular and cellular biochemistry 132, 163- 171.
  • Han, J.S., Bizon, J.L., Chun, H.J., Maus, C.E., and Gallagher, M. (2002). Decreased glucocorticoid receptor mRNA and dysfunction of HPA axis in rats after removal of the cholinergic innervation to hippocampus. The European journal of neuroscience 16, 1399-1404.
  • Gray, J.A., and McNaughton, N. (1983). Comparison between the behavioural effects of septal and hippocampal lesions: a review. Neuroscience and biobehavioral reviews 7, 119-188.
  • Gilad, G.M., Rabey, J.M., Tizabi, Y., and Gilad, V.H. (1987). Age-dependent loss and compensatory changes of septohippocampal cholinergic neurons in two rat strains differing in longevity and response to stress. Brain research 436, 311- 322.
  • Gallagher, M., and Colombo, P.J. (1995). Ageing: the cholinergic hypothesis of cognitive decline. Current opinion in neurobiology 5, 161-168.
  • Gallagher, M., Stocker, A.M., and Koh, M.T. (2011). Mindspan: lessons from rat models of neurocognitive aging. ILAR journal / National Research Council, Institute of Laboratory Animal Resources 52, 32-40.
  • Gallagher, M., Burwell, R., and Burchinal, M. (1993). Severity of spatial learning impairment in aging: development of a learning index for performance in the Morris water maze. Behavioral neuroscience 107, 618-626.
  • Frick, K.M., Kim, J.J., and Baxter, M.G. (2004). Effects of complete immunotoxin lesions of the cholinergic basal forebrain on fear conditioning and spatial learning. Hippocampus 14, 244-254.
  • Francis, P.T. (2003). Glutamatergic systems in Alzheimer's disease. International journal of geriatric psychiatry 18, S15-21.
  • Fischer, W., Gage, F.H., and Bjorklund, A. (1989). Degenerative Changes in Forebrain Cholinergic Nuclei Correlate with Cognitive Impairments in Aged Rats. The European journal of neuroscience 1, 34-45.
  • Fischer, W., Chen, K.S., Gage, F.H., and Bjorklund, A. (1992). Progressive decline in spatial learning and integrity of forebrain cholinergic neurons in rats during aging. Neurobiology of aging 13, 9-23.
  • Dutar, P., Bassant, M.H., Senut, M.C., and Lamour, Y. (1995). The septohippocampal pathway: structure and function of a central cholinergic system. Physiological reviews 75, 393-427.
  • Doucas, V., Shi, Y., Miyamoto, S., West, A., Verma, I., and Evans, R.M. (2000). Cytoplasmic catalytic subunit of protein kinase A mediates cross-repression by NF-kappa B and the glucocorticoid receptor. Proceedings of the National Academy of Sciences of the United States of America 97, 11893-11898.
  • Dornan, W.A., McCampbell, A.R., Tinkler, G.P., Hickman, L.J., Bannon, A.W., Decker, M.W., and Gunther, K.L. (1996). Comparison of site-specific injections into the basal forebrain on water maze and radial arm maze performance in the male rat after immunolesioning with 192 IgG saporin. Behavioural brain research 82, 93-101.
  • Dekker, A.J., Connor, D.J., and Thal, L.J. (1991). The role of cholinergic projections from the nucleus basalis in memory. Neuroscience and biobehavioral reviews 15, 299-317.
  • De Lacalle, S., Lim, C., Sobreviela, T., Mufson, E.J., Hersh, L.B., and Saper, C.B. (1994). Cholinergic innervation in the human hippocampal formation including the entorhinal cortex. The Journal of comparative neurology 345, 321-344.
  • De Bosscher, K., Vanden Berghe, W., and Haegeman, G. (2000). Mechanisms of anti-inflammatory action and of immunosuppression by glucocorticoids: negative interference of activated glucocorticoid receptor with transcription factors. Journal of neuroimmunology 109, 16-22.
  • Dawbarn, D., Allen, S.J., and Semenenko, F.M. (1988). Coexistence of choline acetyltransferase and nerve growth factor receptors in the rat basal forebrain. Neuroscience letters 94, 138-144.
  • Davis, K.L., Davis, B.M., Greenwald, B.S., Mohs, R.C., Mathe, A.A., Johns, C.A., and Horvath, T.B. (1986). Cortisol and Alzheimer's disease, I: Basal studies. The American journal of psychiatry 143, 300-305.
  • Datson, N.A., Polman, J.A., de Jonge, R.T., van Boheemen, P.T., van Maanen, E.M., Welten, J., McEwen, B.S., Meiland, H.C., and Meijer, O.C. (2011). Specific regulatory motifs predict glucocorticoid responsiveness of hippocampal gene expression. Endocrinology 152, 3749-3757.
  • Dashniani, M., Burjanadze, M., Beselia, G., Maglakelidze, G., and Naneishvili, T. (2009). Spatial memory following selective cholinergic lesion of the nucleus basalis magnocellularis. Georgian medical news, 77-81.
  • Craig, L.A., Hong, N.S., Kopp, J., and McDonald, R.J. (2008). Emergence of spatial impairment in rats following specific cholinergic depletion of the medial septum combined with chronic stress. The European journal of neuroscience 27, 2262-2271.
  • Conrad, C.D., and Bimonte-Nelson, H.A. (2010). Impact of the hypothalamicpituitary- adrenal/gonadal axes on trajectory of age-related cognitive decline. Progress in brain research 182, 31-76.
  • Chabot-Fletcher, M. (1997). A role for transcription factor NF-kappa B in inflammation. Inflammation research : official journal of the European Histamine Research Society [et al] 46, 1-2.
  • Brureau, A., Zussy, C., Delair, B., Ogier, C., Ixart, G., Maurice, T., and Givalois, L. (2013). Deregulation of hypothalamic-pituitary-adrenal axis functions in an Alzheimer's disease rat model. Neurobiology of aging 34, 1426-1439.
  • Bizon, J.L., Helm, K.A., Han, J.S., Chun, H.J., Pucilowska, J., Lund, P.K., and Gallagher, M. (2001). Hypothalamic-pituitary-adrenal axis function and corticosterone receptor expression in behaviourally characterized young and aged Long-Evans rats. The European journal of neuroscience 14, 1739-1751.
  • Bigl, V., Woolf, N.J., and Butcher, L.L. (1982). Cholinergic projections from the basal forebrain to frontal, parietal, temporal, occipital, and cingulate cortices: a combined fluorescent tracer and acetylcholinesterase analysis. Brain research bulletin 8, 727-749.
  • Bierhaus, A., Wolf, J., Andrassy, M., Rohleder, N., Humpert, P.M., Petrov, D., Ferstl, R., von Eynatten, M., Wendt, T., Rudofsky, G., et al. (2003). A mechanism converting psychosocial stress into mononuclear cell activation. Proceedings of the National Academy of Sciences of the United States of America 100, 1920- 1925.
  • Biegon, A., Greenberger, V., and Segal, M. (1986). Quantitative histochemistry of brain acetylcholinesterase and learning rate in the aged rat. Neurobiology of aging 7, 215-217.
  • Baxter, M.G., and Gallagher, M. (1996). Intact spatial learning in both young and aged rats following selective removal of hippocampal cholinergic input. Behavioral neuroscience 110, 460-467.
  • Baxter, M.G., and Chiba, A.A. (1999). Cognitive functions of the basal forebrain. Current opinion in neurobiology 9, 178-183.
  • Baxter, M.G., Bucci, D.J., Sobel, T.J., Williams, M.J., Gorman, L.K., and Gallagher, M. (1996). Intact spatial learning following lesions of basal forebrain cholinergic neurons. Neuroreport 7, 1417-1420.
  • Baxter, M.G., Bucci, D.J., Gorman, L.K., Wiley, R.G., and Gallagher, M. (1995). Selective immunotoxic lesions of basal forebrain cholinergic cells: effects on learning and memory in rats. Behavioral neuroscience 109, 714-722.
  • Baum, A., and Posluszny, D.M. (1999). Health psychology: mapping biobehavioral contributions to health and illness. Annual review of psychology 50, 137-163.
  • Bauer, M.E., Perks, P., Lightman, S.L., and Shanks, N. (2001). Restraint stress is associated with changes in glucocorticoid immunoregulation. Physiology & behavior 73, 525-532.
  • Baskerville, K.A., Kent, C., Nicolle, M.M., Gallagher, M., and McKinney, M. (2006). Aging causes partial loss of basal forebrain but no loss of pontine reticular cholinergic neurons. Neuroreport 17, 1819-1823.
  • Bartus, R.T., Dean, R.L., 3rd, Beer, B., and Lippa, A.S. (1982). The cholinergic hypothesis of geriatric memory dysfunction. Science 217, 408-414.
  • Barnes, C.A. (1988). Spatial learning and memory processes: the search for their neurobiological mechanisms in the rat. Trends in neurosciences 11, 163-169.
  • Baldwin, A.S., Jr. (1996). The NF-kappa B and I kappa B proteins: new discoveries and insights. Annual review of immunology 14, 649-683.
  • Appel, S.H. (1981). A unifying hypothesis for the cause of amyotrophic lateral sclerosis, parkinsonism, and Alzheimer disease. Annals of neurology 10, 499- 505.
  • Altavista, M.C., Rossi, P., Bentivoglio, A.R., Crociani, P., and Albanese, A. (1990). Aging is associated with a diffuse impairment of forebrain cholinergic neurons. Brain research 508, 51-59.
  • Aisen, P.S., and Davis, K.L. (1994). Inflammatory mechanisms in Alzheimer's disease: implications for therapy. The American journal of psychiatry 151, 1105-1113.
  • Adzic, M., Djordjevic, J., Djordjevic, A., Niciforovic, A., Demonacos, C., Radojcic, M., and Krstic-Demonacos, M. (2009). Acute or chronic stress induce cell compartment-specific phosphorylation of glucocorticoid receptor and alter its transcriptional activity in Wistar rat brain. The Journal of endocrinology 202, 87-97.