박사

Fabrication and Characterization of Transparent Composite Layers for Flexible Organic Light-Emitting Diodes : 유연 유기 발광 다이오드를 위한 독창적인 효과적인 투명 복합층의 제작

' Fabrication and Characterization of Transparent Composite Layers for Flexible Organic Light-Emitting Diodes : 유연 유기 발광 다이오드를 위한 독창적인 효과적인 투명 복합층의 제작' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • buffer layer
  • composite electrode
  • conductive polymer
  • electrospun nanofibers
  • flexible organic light-emitting diode (foled)
  • flexible transparent electrode
  • light scattering
  • light-emitting diodes (leds)
  • low-temperature processing
  • micropatterning
  • negative mold transfer printing (nmtp)
  • oxidation
  • silver nanowire
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
292 0

0.0%

' Fabrication and Characterization of Transparent Composite Layers for Flexible Organic Light-Emitting Diodes : 유연 유기 발광 다이오드를 위한 독창적인 효과적인 투명 복합층의 제작' 의 참고문헌

  • Zhu, S., et al., Transferable self-welding silver nanowire networkas high performance transparent flexible electrode. Nanotechnology, 2013.24(33).
  • Zhao, B., et al., Acetone-assisted deposition of silver films insupercritical carbon dioxide. Microelectronic Engineering, 2008. 85(4): p.675-681.
  • Zhang, D., et al., Surface studies of polymer blends by sumfrequency vibrational spectroscopy, atomic force microscopy, and contactangle goniometry. Journal of Physical Chemistry B, 1998. 102(32): p. 6225-6230.
  • Zeng, X.Y., et al., A new transparent conductor: Silver nanowirefilm buried at the surface of a transparent polymer. Advanced Materials,2010. 22(40): p. 4484-4488.119
  • Yoshioka, Y., P.D. Calvert, and G.E. Jabbour, Simple modification117of sheet resistivity of conducting polymeric anodes via combinatorial inkjetprinting techniques. Macromolecular Rapid Communications, 2005.26(4): p. 238-246.
  • Yim, Y., J. Park, and B. Park, Solution-processed flexible Ito-freeorganic light-emitting diodes using patterned polymeric anodes. IEEE/OSAJournal of Display Technology, 2010. 6(7): p. 252-256.
  • Yarin, A.L., S. Sinha-Ray, and B. Pourdeyhimi, Meltblowing:Multiple polymer jets and fiber-size distribution and lay-down patterns.Polymer, 2011. 52(13): p. 2929-2938.124
  • Yan, X., et al., Fabrication of carbon nanofiber-polyanilinecomposite flexible paper for supercapacitor. Nanoscale, 2011. 3(1): p. 212-216.
  • Wu, X.F. and A.L. Yarin, Recent progress in interfacial tougheningand damage self-healing of polymer composites based on electrospun andsolution-blown nanofibers: An overview. Journal of Applied PolymerScience, 2013. 130(4): p. 2225-2237.
  • Wu, X., et al., Highly conductive and uniform graphene hybridelectrode with chemical reduction for flexible organic light-emitting diodes.Digest of Technical Papers - SID International Symposium, 2014. 45(1): p.1336-1339.
  • Wu, L.Y.L., W.T. Kerk, and C.C. Wong, Transparent conductivefilm by large area roll-to-roll processing. Thin Solid Films, 2013. 544: p.427-432.
  • Wang, G.F., et al., Modification of conductive polymer forpolymeric anodes of flexible organic light-emitting diodes. Nanoscale115Research Letters, 2009. 4(7): p. 613-617.
  • Wang, F. and X. Liu, Recent advances in the chemistry oflanthanide-doped upconversion nanocrystals. Chemical Society Reviews,2009. 38(4): p. 976-989.
  • Venkatesan, M., S. McGee, and U. Mitra, Indium tin oxide thinfilms for metallization in microelectronic devices. Thin Solid Films, 1989.170(2): p. 151-162.
  • Van De Groep, J., P. Spinelli, and A. Polman, Transparentconducting silver nanowire networks. Nano Letters, 2012. 12(6): p. 3138-3144.
  • Unno, N. and J. Taniguchi, Two-tone metal pattern transfertechnique using a single mold surface. Microelectronic Engineering, 2010.87(5-8): p. 1019-1023.
  • Ummartyotin, S., et al., Development of transparent bacterialcellulose nanocomposite film as substrate for flexible organic light emittingdiode (OLED) display. Industrial Crops and Products, 2012. 35(1): p. 92-97.
  • Tsai, K.-H., S.-C. Shiu, and C.-F. Lin. Improving the conductivityof hole injection layer by heating PEDOT:PSS. 2008.
  • Sun, Y., et al., Management of singlet and triplet excitons forefficient white organic light-emitting devices. Nature, 2006. 440(7086): p.908-912.
  • Sun, Y., Silver nanowires - Unique templates for functionalnanostructures. Nanoscale, 2010. 2(9): p. 1626-1642.
  • Sun, D.M., et al., Flexible high-performance carbon nanotubeintegrated circuits. Nature Nanotechnology, 2011. 6(3): p. 156-161.
  • Soo Kim, Y., et al., Highly conductive PEDOT/silicate hybridanode for ITO-free polymer solar cells. Solar Energy Materials and Solar121Cells, 2010. 94(3): p. 471-477.
  • Sinha-Ray, S., et al., Solution blowing of soy protein fibers.Biomacromolecules, 2011. 12(6): p. 2357-2363.
  • Schmitz, C., et al., Efficient screening of electron transportmaterial in multi-layer organic light emitting diodes by combinatorialmethods. Physical Chemistry Chemical Physics, 1999. 1(8): p. 1777-1781.
  • Saxena, K., V.K. Jain, and D.S. Mehta, A review on the lightextraction techniques in organic electroluminescent devices. OpticalMaterials, 2009. 32(1): p. 221-233.
  • Sarkar, K., et al., Electrospinning to Forcespinning . MaterialsToday, 2010. 13(11): p. 12-14.
  • Salamon, A.W., The current world of nanomaterialcharacterization: Discussion of analytical instruments for nanomaterialcharacterization. Environmental Engineering Science, 2013. 30(3): p. 101-108.
  • Sachse, C., et al., Transparent, dip-coated silver nanowireelectrodes for small molecule organic solar cells. Organic Electronics:120physics, materials, applications, 2013. 14(1): p. 143-148.
  • Rolland, J.P., et al., High-Resolution Soft Lithography: EnablingMaterials for Nanotechnologies. Angewandte Chemie International Edition,2004. 43(43): p. 5796-5799.
  • Reinhard, M., et al., Solution-processed polymer-silver nanowiretop electrodes for inverted semi-transparent solar cells. OrganicElectronics: physics, materials, applications, 2013. 14(1): p. 273-277.
  • Rathmell, A.R., et al., Synthesis of oxidation-resistant cupronickelnanowires for transparent conducting nanowire networks. Nano Letters,2012. 12(6): p. 3193-3199.
  • Qin, X., et al., Synthesis of silver nanowires and their applicationsin the electrochemical detection of halide. Talanta, 2011. 84(3): p. 673-678.
  • Pham, Q.P., U. Sharma, and A.G. Mikos, Electrospinning ofpolymeric nanofibers for tissue engineering applications: A review. TissueEngineering, 2006. 12(5): p. 1197-1211.
  • Periyakaruppan, A., et al., Detection of ricin using a carbonnanofiber based biosensor. Biosensors and Bioelectronics, 2011. 28(1): p.428-433.
  • Park, S. and R.S. Ruoff, Chemical methods for the production of graphenes. Nature nanotechnology, 2009. 4(4): p. 217-224.
  • Park, J.W., et al., Enhancement in light extraction efficiency oforganic light emitting diodes using double-layered transparent conductingoxide structure. Organic Electronics: physics, materials, applications, 2014.15(10): p. 2178-2183.
  • Pandey, J.K., A.N. Nakagaito, and H. Takagi, Fabrication andapplications of cellulose nanoparticle-based polymer composites. PolymerEngineering and Science, 2013. 53(1): p. 1-8.
  • Ouyang, S., et al., Photolithographic patterning of highlyconductive PEDOT:PSS and its application in organic light-emitting diodes.Journal of Polymer Science, Part B: Polymer Physics, 2014. 52(18): p.1221-1226.
  • Oh, T.-Y., et al., Fabrication of 6,13-bis(triisopropyl-silylethynyl)?pentacene thin-film transistors with the silver ink transfer method using apolymer stamp. physica status solidi (RRL) ? Rapid Research Letters, 2011.5(3): p. 101-103.
  • Nilsson, D., et al., An all-organic sensor?transistor based on anovel electrochemical transducer concept printed electrochemical sensorson paper. Sensors and Actuators B: Chemical, 2002. 86(2?3): p. 193-197.
  • Murray, B.J., et al., Reversible resistance modulation inmesoscopic silver wires induced by exposure to amine vapor. AnalyticalChemistry, 2005. 77(16): p. 5205-5214.
  • Mu, H., et al., A comparative study of electrode effects on theelectrical and luminescent characteristics of Alq3/TPD OLED:Improvements due to conductive polymer (PEDOT) anode. Journal ofLuminescence, 2007. 126(1): p. 225-229.
  • Moore, W.M. and P.J. Codella, Oxidation of silver films by atomicoxygen. Journal of Physical Chemistry, 1988. 92(15): p. 4421-4426.
  • Moon, I.K., et al., 2D graphene oxide nanosheets as an adhesiveover-coating layer for flexible transparent conductive electrodes. ScientificReports, 2013. 3.
  • Mao, X., T. Alan Hatton, and G.C. Rutledge, A review ofelectrospun carbon fibers as electrode materials for energy storage.Current Organic Chemistry, 2013. 17(13): p. 1390-1401.
  • Ma, R., et al., Knitted fabrics made from highly conductivestretchable fibers. Nano Letters, 2014. 14(4): p. 1944-1951.
  • Long, Y.Z., et al., Recent advances in large-scale assembly ofsemiconducting inorganic nanowires and nanofibers for electronics,sensors and photovoltaics. Chemical Society Reviews, 2012. 41(12): p.4560-4580.
  • Logothetidis, S., Flexible organic electronic devices: Materials,process and applications. Materials Science and Engineering B: Solid-StateMaterials for Advanced Technology, 2008. 152(1-3): p. 96-104.
  • Liu, S.W., et al. Low resistance and high work-functionWO3/Ag/MoO2 multilayer as transparent anode for bright organic lightemittingdiodes. in 21st International Workshop on Active-Matrix FlatpanelDisplays and Devices: TFT Technologies and FPD Materials, AM-FPD2014. 2014. Kyoto: IEEE Computer Society.
  • Liu, C.H. and X. Yu, Silver nanowire-based transparent, flexible,and conductive thin film. Nanoscale Research Letters, 2011. 6(1): p. X1-8.
  • Lim, J.-W., et al., Mechanical integrity of flexible Ag nanowirenetwork electrodes coated on colorless PI substrates for flexible organicsolar cells. Solar Energy Materials and Solar Cells, 2012. 105(0): p. 69-76.
  • Li, X., W.B. Chen, and H. Lin. Semitransparent organic lightemitting device with ag electrodes. in 2006 IEEE Region 10 Conference,TENCON 2006. 2007. Hong Kong.
  • Lee, M.W., et al., Fine patterning of glycerol-doped PEDOT:PSSon hydrophobic PVP dielectric with ink jet for source and drain electrodeof OTFTs. Organic Electronics: physics, materials, applications, 2010. 11(5):p. 854-859.
  • Lee, M.S., et al., Flexible all-polymer field effect transistors withoptical transparency using electrically conducting polymers. ICMAT 03,2005. 477(1-2): p. 169-173.
  • Lee, C. and J.J. Kim, Enhanced light out-coupling of OLEDs withlow haze by inserting randomly dispersed nanopillar arrays formed bylateral phase separation of polymer blends. Small, 2013. 9(22): p. 3858-3863.
  • Lang, U., et al., Microscopical investigations of PEDOT:PSS thinfilms. Advanced Functional Materials, 2009. 19(8): p. 1215-1220.
  • Lai, S.L., et al., Concentration effect of glycerol on theconductivity of PEDOT film and the device performance. Materials Scienceand Engineering B: Solid-State Materials for Advanced Technology, 2003.104(1-2): p. 26-30.118
  • Kim, Y.H., et al., Highly conductive PEDOT:PSS electrode withoptimized solvent and thermal post-treatment for ITO-free organic solarcells. Advanced Functional Materials, 2011. 21(6): p. 1076-1081.
  • Kim, T., et al., Uniformly interconnected silver-nanowire networksfor transparent film heaters. Advanced Functional Materials, 2013. 23(10):p. 1250-1255.
  • Kim, T., et al., Electrostatic Spray Deposition of HighlyTransparent Silver Nanowire Electrode on Flexible Substrate. ACS AppliedMaterials & Interfaces, 2012. 5(3): p. 788-794.
  • Kim, M., et al. Electrical and optical properties of IZO-Ag-IZOmultilayer electrode by Ag deposition rate and thickness for organic lightemitting diode. in 10th International Meeting on Information Display andInternational Display Manufacturing Conference and Asia Display 2010,IMID/IDMC/ASIA Display 2010. 2010. Seoul.
  • Kim, K., et al., Transparency controllable silver-based electrodefor flexible optoelectronics. Applied Physics Letters, 2013. 102(8).
  • Kim, J.W., et al., FDTD analysis of the light extraction efficiencyof OLEDs with a random scattering layer. Optics Express, 2014. 22(1): p.498-507.
  • Kim, J.S., et al., Electroluminescence emission pattern of organiclight-emitting diodes: Implications for device efficiency calculations.Journal of Applied Physics, 2000. 88(2): p. 1073-1081.
  • Kim, J., et al., Simple technique for spatially separatednanofibers/nanobeads by multinozzle electrospinning toward white-lightemission. ACS Applied Materials and Interfaces, 2013. 5(13): p. 6038-6044.
  • Kim, H., et al., Electrical, optical, and structural properties ofindium?tin?oxide thin films for organic light-emitting devices. Journal ofApplied Physics, 1999. 86(11): p. 6451-6461.
  • Kim, A., et al., All-solution-processed indium-free transparentcomposite electrodes based on Ag nanowire and metal oxide for thin-filmsolar cells. Advanced Functional Materials, 2014. 24(17): p. 2462-2471.
  • Jeong, B., S. Uhm, and J. Lee. Iron-cobalt modified electrospuncarbon nanofibers as oxygen reduction catalysts in alkaline fuel cells. in10th Polymer Electrolyte Fuel Cell Symposium, PEFC 10 - 218th ECS123Meeting. 2010. Las Vegas, NV.
  • Ito, N., et al., Electrical and optical properties of amorphousindium zinc oxide films. Proceedings of the Fourth International Symposiumon Transparent Oxide Thin Film for Electronics and Optics (TOEO-4), 2006.496(1): p. 99-103.
  • Im, H.G., et al., Flexible transparent conducting hybrid film usinga surface-embedded copper nanowire network: A highly oxidation-resistantcopper nanowire electrode for flexible optoelectronics. ACS Nano, 2014.8(10): p. 10973-10979.
  • Hyun, W.J., et al., Corrugated structure through a spin-coatingprocess for enhanced light extraction from organic light-emitting diodes.Organic Electronics: physics, materials, applications, 2012. 13(4): p. 579-585.
  • Hwang, J.O., et al., Workfunction-tunable, N-doped reducedgraphene transparent electrodes for high-performance polymer lightemittingdiodes. ACS Nano, 2012. 6(1): p. 159-167.
  • Hwang, J.K., et al., Direct nanoprinting by liquid-bridge-mediatednanotransfer moulding. Nature Nanotechnology, 2010. 5(10): p. 742-748.
  • Hung, C.H. and W.W.F. Leung, Filtration of nano-aerosol usingnanofiber filter under low Peclet number and transitional flow regime.Separation and Purification Technology, 2011. 79(1): p. 34-42.
  • Huh, J.W., et al., Characteristics of organic light-emitting diodeswith conducting polymer anodes on plastic substrates. Journal of AppliedPhysics, 2008. 103(4): p. -.
  • Huang, J., et al., Influence of thermal treatment on the conductivityand morphology of PEDOT/PSS films. Proceedings of the FifthInternational Topical Conference, 2003. 139(3): p. 569-572.
  • Huang, F.L., et al., Dynamic wettability and contact angles ofpoly(vinylidene fluoride) nanofiber membranes grafted with acrylic acid.Express Polymer Letters, 2010. 4(9): p. 551-558.
  • Hu, Y., et al., Effects of heat treatment on properties of ITO filmsprepared by rf magnetron sputtering. Vacuum, 2004. 75(2): p. 183-188.
  • Hsiao, Y.-S., et al., High-conductivity poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film for use in ITO-freepolymer solar cells. Journal of Materials Chemistry, 2008. 18(48): p. 5948-5955.
  • Han, T.H., et al., Extremely efficient flexible organic light-emittingdiodes with modified graphene anode. Nature Photonics, 2012. 6(2): p. 105-110.
  • Haacke, G., New figure of merit for transparent conductors.Journal of Applied Physics, 1976. 47(9): p. 4086-4089.
  • Guo, H., et al., Copper nanowires as fully transparent conductiveelectrodes. Scientific Reports, 2013. 3.
  • Gu, G., et al., High-external-quantum-efficiency organic lightemittingdevices. Optics Letters, 1997. 22(6): p. 396-398.116
  • Geffroy, B., P. le Roy, and C. Prat, Organic light-emitting diode(OLED) technology: Materials, devices and display technologies. PolymerInternational, 2006. 55(6): p. 572-582.122
  • Ge, J., G. Cheng, and L. Chen, Transparent and flexible electrodesand supercapacitors using polyaniline/single-walled carbon nanotubecomposite thin films. Nanoscale, 2011. 3(8): p. 3084-3088.
  • Forrest, S.R., The path to ubiquitous and low-cost organicelectronic appliances on plastic. Nature, 2004. 428(6986): p. 911-918.
  • Forrest, S.R., D.D.C. Bradley, and M.E. Thompson, Measuring theefficiency of organic light-emitting devices. Advanced Materials, 2003.15(13): p. 1043-1048.
  • Feng, T., et al., A facile method for preparing transparent,conductive, and paper-like silver nanowire films. Journal of Nanomaterials,2011. 2011.
  • Eom, S.H., et al., Polymer solar cells based on inkjet-printedPEDOT:PSS layer. Organic Electronics: physics, materials, applications,2009. 10(3): p. 536-542.
  • Del Campo, A. and C. Greiner, SU-8: A photoresist for highaspect-ratio and 3D submicron lithography. Journal of Micromechanicsand Microengineering, 2007. 17(6): p. R81-R95.
  • Crispin, X., et al., The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)- poly(styrenesulfonate) (PEDOT-PSS) plasticelectrodes. Chemistry of Materials, 2006. 18(18): p. 4354-4360.
  • Coskun, S., E. Selen Ates, and H. Emrah Unalan, Optimization ofsilver nanowire networks for polymer light emitting diode electrodes.Nanotechnology, 2013. 24(12).
  • Choi, M.C., Y. Kim, and C.S. Ha, Polymers for flexible displays:From material selection to device applications. Progress in PolymerScience (Oxford), 2008. 33(6): p. 581-630.
  • Cho, T.H., et al., Electrochemical performances ofpolyacrylonitrile nanofiber-based nonwoven separator for lithium-ionbattery. Electrochemical and Solid-State Letters, 2007. 10(7): p. A159-A162.
  • Cho, H., S.Y. Min, and T.W. Lee, Electrospun organic nanofiberelectronics and photonics. Macromolecular Materials and Engineering,2013. 298(5): p. 475-486.
  • Cheong, H.G., et al., Silver nanowire network transparentelectrodes with highly enhanced flexibility by welding for application inflexible organic light-emitting diodes. ACS Applied Materials andInterfaces, 2014. 6(10): p. 7846-7855.
  • Chen, Z., B. Cotterell, and W. Wang, The fracture of brittle thinfilms on compliant substrates in flexible displays. Engineering FractureMechanics, 2002. 69(5): p. 597-603.
  • Chang, M.H., et al., Light emitting diodes reliability review.Microelectronics Reliability, 2012. 52(5): p. 762-782.
  • Chang, H., et al., A transparent, flexible, low-temperature, andsolution-processible graphene composite electrode. Advanced FunctionalMaterials, 2010. 20(17): p. 2893-2902.
  • Cakmakci, O. and J. Rolland, Head-worn displays: A review.IEEE/OSA Journal of Display Technology, 2006. 2(3): p. 199-216.
  • Cairns, D.R., et al., Strain-dependent electrical resistance of tindopedindium oxide on polymer substrates. Applied Physics Letters, 2000.76(11): p. 1425-1427.
  • Bocksrocker, T., et al., Micro-spherically textured organic lightemitting diodes: A simple way towards highly increased light extraction.Organic Electronics: physics, materials, applications, 2013. 14(1): p. 396-401.
  • Behar-Cohen, F., et al., Light-emitting diodes (LED) for domesticlighting: Any risks for the eye? Progress in Retinal and Eye Research, 2011.30(4): p. 239-257.
  • Baldo, M.A., et al., Highly efficient phosphorescent emission fromorganic electroluminescent devices. Nature, 1998. 395(6698): p. 151-154.
  • Baldo, M.A., M.E. Thompson, and S.R. Forrest, High-efficiencyfluorescent organic light-emitting devices using a phosphorescent sensitizer.Nature, 2000. 403(6771): p. 750-753.
  • Alemu, D., et al., Highly conductive PEDOT:PSS electrode bysimple film treatment with methanol for ITO-free polymer solar cells.Energy and Environmental Science, 2012. 5(11): p. 9662-9671.
  • ?1. Renouf, C., A touch of indium. Nature Chemistry, 2012. 4(10): p.862.