박사

난류영역에서의 나노유체의 유동 및 대류 열전달 특성에 대한 실험적 연구 : EXPERIMENTAL INVESTIGATION ON THE FLOW AND CONVECTIVE HEAT TRANSFER COEFFICIENT OF NANOFLUIDS IN TURBULENT REGION

김현진 2015년
논문상세정보
' 난류영역에서의 나노유체의 유동 및 대류 열전달 특성에 대한 실험적 연구 : EXPERIMENTAL INVESTIGATION ON THE FLOW AND CONVECTIVE HEAT TRANSFER COEFFICIENT OF NANOFLUIDS IN TURBULENT REGION' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • convection heat transfer
  • nanofluids
  • particle migration
  • turbulnet
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
19 0

0.0%

' 난류영역에서의 나노유체의 유동 및 대류 열전달 특성에 대한 실험적 연구 : EXPERIMENTAL INVESTIGATION ON THE FLOW AND CONVECTIVE HEAT TRANSFER COEFFICIENT OF NANOFLUIDS IN TURBULENT REGION' 의 참고문헌

  • Y. Yang, Z.G. Zhang, E.A. Grulke, W.B. Anderson, G. Wu, Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow, Int. J. Heat Mass Transfer 48 (2005) 1107-1116.
  • Y. Xuan, Q. Li, Investigation on convective heat transfer and flow features of nanofluids, ASME J. Heat Transfer 125 (2003) 151-155.
  • Y. He, Y. Jin, H. Chen, Y. Ding, D. Cang, H. Lu, Heat transfer and flow behaviour of aqueous suspensions of TiO2 nanoparticles (nanofluids) flowing upward through a vertical pipe, Int. J. Heat Mass Transfer 50 (2007) 2272-2281.
  • Y. Ding, H. Alias, D. Wen, R.A. Williams, Heat transfer of aqueous suspensions of carbon nanotubes (MWCNT nanofluids), Int. J. Heat Mass Transfer 49 (2006) 240-250.
  • X. Wang, X. Xu, S.U.S. Choi, Thermal conductivity of nanoparticle-fluid mixture, J. Thermophysics Heat Transfer 13 (1999) 474-480.
  • W. Williams, J. Buongiorno, L. Hu, Experimental Investigation of Turbulent Convective Heat Transfer and Pressure Loss of Alumina/Water and Zirconia/Water Nanoparticle Colloids (Nanofluids) in Horizontal Tubes, J. Heat Transfer 130 (2008) 042412.
  • W. Duangthongsuk, S. Wongwises, Heat transfer enhancement and pressure drop characteristics of TiO2-water nanofluid in a double-tube counter flow heat exchanger, Int. J. Heat Mass Transfer 52 (2009) 2059-2067.
  • W. Duangthongsuk, S. Wongwises, An experimental study on the heat transfer performance and pressure drop of TiO2-water nanofluids flowing under a turbulent flow regime, Int. J. Heat Mass Transfer 53 (2010) 334-344.
  • U. Rea, T. McKrell, L. Hu, J. Buongiorno, Laminar convective heat transfer and viscous pressure loss of alumina-water and zirconia-water nanofluids, Int. J. Heat Mass Transfer 52 (2009) 2042-2048.
  • T.H. Nassan, S. Z. Heris, S.H. Noie, A comparison of experimental heat transfer characteristics for Al2O3/water and CuO/water nanofluids in square cross-section duct, Int. Comm. Heat Mass Transfer 37 (2010) 924-928.
  • S.Z. Heris, S.G. Etemad, M.N. Esfahany, Experimental investigation of oxide nanofluids laminar flow convective heat transfer, Int. Comm. Heat Mass Transfer 33 (2006) 529-535.
  • S.Z. Heris, M. N. Esfahany, S.Gh. Etemad, Experimental investigation of convective heat transfer of Al2O3/water nanofluid in circular tube Int. J. Heat Fluid Flow 28 (2007) 203-210.
  • S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparticles, in Development and Applications of Non Newtonian Flows, D.A. Singer and H.P. Wang, eds., FED-Vol. 231/MD-Vol. 66, ASME, New York (1995) 99-106.
  • S.P. Jang, S.U.S. Choi, The role of Brownian motion in the enhanced thermal conductivity of nanofluids, Appl. Phys. Lett. 84 (2004) 4316-4318.
  • S.M. Fotukian, M.N. Esfahany, Experimental study of turbulent convective heat transfer and pressure drop of dilute CuO/water nanofluid inside a circular tube, Int. Comm. Heat Mass Transfer 37 (2010) 214-219.
  • S.M. Fotukian, M.N. Esfahany, Experimental investigation of turbulent convective heat transfer of dilute -Al2O3/water nanofluid inside a circular tube, Int. J. Heat Fluid Flow 31 (2010) 606-612.
  • S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, ASME J. Heat Transfer 125 (2003) 567-574.
  • S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer 121 (1999) 280-289.
  • S. -H. Lee, Transient hot wire method for measuring thermal conductivity of nanofluids, M. S. thesis, 2010, Korea Aerospace University.
  • S. -H. Lee, S. P. Jang, Effect of the tilting angle of the wire on the onset of natural convection in the transient hot wire method, Review of Scientific Instruments, 2012, Vol.83, 076103-1.
  • R. Prasher, D. Song, J. Wang, and P. Phelan, Measurements of nanofluid viscosity and its implications for thermal applications, Applied Physics Letters 89 (2006) 133108.
  • P.D. Shima, John Philip, Baldev Raj, Influence of aggregation on thermal conductivity in stable and unstable nanofluids, Applied Physics Letters, 97(2010), 153113
  • N.L. Swanson, D.B. Billard, Multiple scattering efficiency and optical extinction, Phys. Rev. E 61 (2000) 4518-4522.
  • N. R. Karthikeyan, J. Philip, and B. Raj, Effect of clustering on the thermal conductivity of nanofluids, Mater. Chem. Phys. 109 (2008) 50-55.
  • M. Hojjat, S. Gh. Etemad, R. Bagheri, J. Thibault, Convective heat transfer of non- Newtonian nanofluids through a uniformly heated circular tube, Int. J. Thermal Sciences 50 (2011) 525-531.
  • M. Hojjat, S. G. Etemad, R. Bagheri, J. Thibault, Convective heat transfer of non- Newtonian nanofluids through a uniformly heated circular tube, Int. J. Thermal Sciences 50 (2011) 525-531.
  • Liu M.-S., Lin M. C.-C., C. Tsai Y., and Wang C.-C., Enhancement of thermal conductivity with Cu for nanofluids using chemical reduction method, Int. J. Heat Mass Transfer 49 (2006) 3028-3033.
  • K.S. Hwang, S.P. Jang, S.U.S. Choi, Flow and Convective Heat Transfer Characteristics of Water-Based Al2O3 Nanofluids in Fully Developed Laminar Flow Regime, Int. J. Heat Mass Transfer 52 (2009) 193-199.
  • K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. Heat Mass Transfer 52 (2009) 2189-2195.
  • K. S. Hong, T.-K.Hong, and H.-S. Yanga, Thermal conductivity of Fe nanofluids depending on the cluster size of nanoparticles, Appl. Phys. Lett.88 (2006) 031901.
  • J.H. Lee, K.S. Hwang, S.P. Jang, B.H. Lee, J.H. Kim, S.U.S. Choi, Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles, Int. J. Heat Mass Transfer 51 (2008) 2651-2656.
  • J.A. Eastman, S.U.S. Choi, W. Yu, L.J. Thompson, Anomalously increased effective thermal conductivity of ethylene glycol-based nanofluids containing copper nanoparticles, Appl. Phys. Lett. 78 (2001) 718-720.
  • J.-H. Lee, K. S. Hwang, S. P. Jang, B. H. Lee, J. H. Kim, S. U. S. Choi and C. J. Choi, Effective viscosities and thermal conductivities of aqueous nanofluidscontaining low volume concentrations of Al2O3nanoparticles, International Journal of Heat and Mass Transfer, 2008, 51, 2651-2656.
  • J. Jung, H. Oh, H. Kwak, Forced convective heat transfer of nanofluids in microchannels, Int. J. Heat Mass Transfer 52 (2009)466-472.
  • J. Garg, B. Poudel, M. Chiesa, J. B. Gordon, J. J. Ma, J. B. Wang, Z. F. Ren, Y. T. Kang, H. Ohtani, J. Nanda, G. H. McKinley and G. Chen, Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid, Journal of Applied Physics 103 (2008) 074301.
  • J. C. Maxwell, A Treatise on Electricity and Magnetism, 1st Edition, Vol. 1, Clarendon Press, Oxford, U.K., pp. 360-366, 1873
  • J. Buongiorno, S. P. Jang, S.H. Lee, K. S. Hwang, A benchmark study on the thermal conductivity of nanofluids, Journal of Applied Physics, 2009, 106, 094312.
  • Incropera, F. P. and Dewitt D. P., 2002, "Fundamentals of Heat and Mass Transfer," 5th Ed., WILEY.
  • H.C. van de Huslt, Light scattering by small particles, John Wiley & Sons, New York (1957)
  • H. Peng, G. Ding, W. Jiang, H. Hu, Y. Gao, Heat transfer characteristics of refrigerant- based nanofluid flow boiling inside a horizontal smooth tube, Int. J. Refrigeration 32 (2009) 1259-1270.
  • H. Chen, W. Yang, Y. He, Y. Ding, L. Zhang, C. Tan, A.A. Lapkin, D.V. Bavykin, Heat transfer and flow behaviour of aqueous suspensions of titanate nanotubes (nanofluids), Powder Technology 183 (2008) 63-72.
  • D. Wen, Y. Ding, Experimental investigation into convective heat transfer of nanofluid at the entrance region under laminar flow conditions, Int. J. Heat Mass Transfer 47 (2004) 5181-5188.
  • D. Kim, Y. Kwon, Y. Cho, C. Li, S. Cheong, Y. Hwang, J. Lee, D. Hong, S. Moon, Convective heat transfer characteristics of nanofluids under laminar and turbulent flow conditions, Current Applied Physics 9 (2009)119-123.
  • C.T. Nguyen, G. Roy, C. Gauthier, N. Galanis, Heat transfer enhancement using Al2O3-Water nanofluid for an electronic cooling system, Applied Thermal Engineering 27 (2007) 1501-1506.
  • Bejan, A., 2003, “Convection Heat Transfer”, 3re Ed., WILEY
  • B.C. Pak, Y. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Exp. Heat Transfer 11 (1998) 151-170.
  • A.D. Sommers, K.L. Yerkes, Experimental investigation into the convective heat transfer and system-level effects of Al2O3-propanol nanofluid, J. Nanopart. Res. 12 (2010)1003-1014.