박사

Hybrid Quantum Dot-Organic Solar Cells by Solution Processing

Gi-Hwan Kim 2015년
논문상세정보
' Hybrid Quantum Dot-Organic Solar Cells by Solution Processing' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • bulk-heterojunction
  • hybrid solar cells
  • organic
  • organic solar cells
  • pbs
  • quantum dot
  • quantum dot solar cell
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
181 0

0.0%

' Hybrid Quantum Dot-Organic Solar Cells by Solution Processing' 의 참고문헌

  • 98
  • Zimmennann, L.; Weibel, M.; Caseri, W.; Suter, U. W., High refractive index films of polymer nanocomposites. Journal of materials research 1993, 8 (07), 1742-1748.
  • Zhitomirsky, D.; Furukawa, M.; Tang, J.; Stadler, P.; Hoogland, S.; Voznyy, O.; Liu, H.; Sargent, E. H., NType ColloidalQuantumDot Solids for Photovoltaics. Advanced materials 2012, 24 (46), 6181-6185.
  • Yu, G.; Gao, J.; Hummelen, J.; Wudl, F.; Heeger, A., Polymer photovoltaic cells: enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science-AAAS-Weekly Paper Edition 1995, 270 (5243), 1789-1790.
  • Yang, C.; Heeger, A., Morphology of composites of semiconducting polymers mixed with C< sub> 60</sub>. Synthetic metals 1996, 83 (2), 85-88.
  • Yakimov, A.; Forrest, S., High photovoltage multiple-heterojunction organic solar cells incorporating interfacial metallic nanoclusters. Applied Physics Letters 2002, 80 (9), 1667-1669.
  • Wu, J.; Becerril, H. A.; Bao, Z.; Liu, Z.; Chen, Y.; Peumans, P., Organic solar cells with solution-processed graphene transparent electrodes. Applied Physics Letters 2008, 92 (26), 263302.
  • Williams, K. J.; Tisdale, W. A.; Leschkies, K. S.; Haugstad, G.; Norris, D. J.; Aydil, E. S.; Zhu, X.-Y., Strong electronic coupling in two-dimensional assemblies of colloidal PbSe quantum dots. ACS nano 2009, 3 (6), 1532-1538.
  • Wienk, M. M.; Kroon, J. M.; Verhees, W. J.; Knol, J.; Hummelen, J. C.; van Hal, P. A.; Janssen, R. A., Efficient methano [70] fullerene/MDMOPPV bulk heterojunction photovoltaic cells. Angewandte Chemie 2003, 115 (29), 3493-3497.
  • Wehrenberg, B. L.; Yu, D.; Ma, J.; Guyot-Sionnest, P., Conduction in charged PbSe nanocrystal films. The Journal of Physical Chemistry B 2005, 109 (43), 20192-20199.
  • Watt, A.; Thomsen, E.; Meredith, P.; Rubinsztein-Dunlop, H., A new approach to the synthesis of conjugated polymer-nanocrystal composites for heterojunction optoelectronics. Chemical communications 2004, (20), 2334-2335.
  • Watt, A. A.; Blake, D.; Warner, J. H.; Thomsen, E. A.; Tavenner, E. L.; Rubinsztein-Dunlop, H.; Meredith, P., Lead sulfide nanocrystal: conducting polymer solar cells. Journal of Physics D: Applied Physics 2005, 38 (12), 2006.
  • Waldauf, C.; Scharber, M. C.; Schilinsky, P.; Hauch, J. A.; Brabec, C. J., Physics of organic bulk heterojunction devices for photovoltaic applications. Journal of applied physics 2006, 99 (10), 104503.
  • Voznyy, O.; Zhitomirsky, D.; Stadler, P.; Ning, Z.; Hoogland, S.; Sargent, E. H., A charge- orbital balance picture of doping in colloidal quantum dot solids. ACS nano 2012, 6 (9), 8448-8455.
  • Vanmaekelbergh, D.; Liljeroth, P., Electron-conducting quantum dot solids: novel materials based on colloidal semiconductor nanocrystals. Chemical Society Reviews 2005, 34 (4), 299-312.
  • Tang, C.; Albrecht, A., Photovoltaic effects of metal-chlorophylla-metal sandwich cells. The Journal of Chemical Physics 2008, 62 (6), 2139-2149.
  • Tang, C. W., Twolayer organic photovoltaic cell. Applied Physics Letters 1986, 48 (2), 183- 185.
  • Sze, S. M.; Ng, K. K., Physics of semiconductor devices. John Wiley & Sons: 2006.
  • Sun, S.-S.; Sariciftci, N. S., Organic photovoltaics: mechanisms, materials, and devices. CRC press: 2005.
  • Sukhovatkin, V.; Hinds, S.; Brzozowski, L.; Sargent, E. H., Colloidal quantum-dot photodetectors exploiting multiexciton generation. Science 2009, 324 (5934), 1542-1544.
  • Srdanov, G.; Wudl, F., Conducting polymer formed of poly (2-methoxy, 5-(2'-ethyl- hexyloxy)-p-phenylenevinylene). Google Patents: 1993.
  • Sista, S.; Park, M. H.; Hong, Z.; Wu, Y.; Hou, J.; Kwan, W. L.; Li, G.; Yang, Y., Highly efficient tandem polymer photovoltaic cells. Advanced materials 2010, 22 (3), 380-383.
  • Siddiki, M. K.; Li, J.; Galipeau, D.; Qiao, Q., A review of polymer multijunction solar cells. Energy & Environmental Science 2010, 3 (7), 867-883.
  • Shrestha, S., Photovoltaics literature survey (No. 109). Progress in Photovoltaics: Research and Applications 2014, 22 (3), 394-397.
  • Shalom, M.; Ruhle, S.; Hod, I.; Yahav, S.; Zaban, A., Energy level alignment in CdS quantum dot sensitized solar cells using molecular dipoles. Journal of the American Chemical Society 2009, 131 (29), 9876-9877.
  • Seo, J.; Cho, M. J.; Lee, D.; Cartwright, A.; Prasad, P. N., Efficient heterojunction photovoltaic cell utilizing nanocomposites of lead sulfide nanocrystals and a lowbandgap polymer. Advanced Materials 2011, 23 (34), 3984-3988.
  • Seo, J. H.; Yang, R.; Brzezinski, J. Z.; Walker, B.; Bazan, G. C.; Nguyen, T. Q., Electronic properties at gold/conjugatedpolyelectrolyte interfaces. Advanced Materials 2009, 21 (9), 1006-1011.
  • Schilinsky, P.; Waldauf, C.; Hauch, J.; Brabec, C. J., Simulation of light intensity dependent current characteristics of polymer solar cells. Journal of Applied Physics 2004, 95 (5), 2816-2819.
  • Schilinsky, P.; Waldauf, C.; Brabec, C. J., Recombination and loss analysis in polythiophene based bulk heterojunction photodetectors. Applied Physics Letters 2002, 81 (20), 3885-3887.
  • Schilinsky, P.; Waldauf, C.; Brabec, C. J., Performance analysis of printed bulk heterojunction solar cells. Advanced Functional Materials 2006, 16 (13), 1669-1672.
  • Scharber, M. C.; Muhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A. J.; Brabec, C. J., Design rules for donors in bulkheterojunction solar cellsTowards 10% energyconversion efficiency. Advanced Materials 2006, 18 (6), 789-794.
  • Saunders, B. R.; Turner, M. L., Nanoparticle-polymer photovoltaic cells. Advances in Colloid and Interface Science 2008, 138 (1), 1-23.
  • Sariciftci, N.; Smilowitz, L.; Heeger, A. J.; Wudl, F., Photoinduced electron transfer from a conducting polymer to buckminsterfullerene. Science 1992, 258 (5087), 1474-1476.
  • Rostalski, J.; Meissner, D., Monochromatic versus solar efficiencies of organic solar cells. Solar energy materials and solar cells 2000, 61 (1), 87-95.
  • Roman, L. S.; Andersson, M. R.; Yohannes, T.; Inganas, O., Photodiode performance and nanostructure of polythiophene/C60 blends. Advanced Materials 1997, 9 (15), 1164-1168.
  • Riedel, I.; Dyakonov, V., Influence of electronic transport properties of polymerfullerene blends on the performance of bulk heterojunction photovoltaic devices. Physica status solidi (a) 2004, 201 (6), 1332-1341.
  • Queisser, H.; Hubner, K.; Shockley, W., Diffusion along small-angle grain boundaries in silicon. Physical Review 1961, 123 (4), 1245.
  • Peumans, P.; Uchida, S.; Forrest, S. R., Efficient bulk heterojunction photovoltaic cells using small-molecular-weight organic thin films. Nature 2003, 425 (6954), 158-162.
  • Petritsch, K.; Dittmer, J.; Marseglia, E.; Friend, R.; Lux, A.; Rozenberg, G.; Moratti, S.; Holmes, A., Dye-based donor/acceptor solar cells. Solar energy materials and solar cells 2000, 61 (1), 63-72.
  • Peet, J.; Kim, J.; Coates, N. E.; Ma, W. L.; Moses, D.; Heeger, A. J.; Bazan, G. C., Efficiency enhancement in low-bandgap polymer solar cells by processing with alkane dithiols. Nature materials 2007, 6 (7), 497-500.
  • Pattantyus-Abraham, A. G.; Kramer, I. J.; Barkhouse, A. R.; Wang, X.; Konstantatos, G.; Debnath, R.; Levina, L.; Raabe, I.; Nazeeruddin, M. K.; Gratzel, M., Depleted-heterojunction colloidal quantum dot solar cells. ACS nano 2010, 4 (6), 3374-3380.
  • Parker, I. D., Carrier tunneling and device characteristics in polymer lightemitting diodes. Journal of Applied Physics 1994, 75 (3), 1656-1666.
  • Park, S. H.; Roy, A.; Beaupre, S.; Cho, S.; Coates, N.; Moon, J. S.; Moses, D.; Leclerc, M.; Lee, K.; Heeger, A. J., Bulk heterojunction solar cells with internal quantum efficiency approaching 100&percnt. Nature photonics 2009, 3 (5), 297-302.
  • Palik, E. D., Handbook of optical constants of solids. Academic press: 1998; Vol. 3.
  • Nozik, A., Quantum dot solar cells. Physica E: Low-dimensional Systems and Nanostructures 2002, 14 (1), 115-120.
  • Nozik, A. J., Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annual Review of Physical Chemistry 2001, 52 (1), 193-231.
  • Novotny, C. J.; Yu, E. T.; Yu, P. K., InP nanowire/polymer hybrid photodiode. Nano letters 2008, 8 (3), 775-779.
  • Norris, D. J., Electronic structure in semiconductor nanocrystals. Marcel Dekker: New York: 2004.
  • Noone, K. M.; Strein, E.; Anderson, N. C.; Wu, P.-T.; Jenekhe, S. A.; Ginger, D. S., Broadband absorbing bulk heterojunction photovoltaics using low-bandgap solution-processed quantum dots. Nano letters 2010, 10 (7), 2635-2639.
  • Nair, G.; Geyer, S. M.; Chang, L.-Y.; Bawendi, M. G., Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Physical Review B 2008, 78 (12), 125325.
  • Murray, C. B.; Kagan, C.; Bawendi, M., Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review of Materials Science 2000, 30 (1), 545-610.
  • Mihailetchi, V.; Wildeman, J.; Blom, P., Space-charge limited photocurrent. Physical review letters 2005, 94 (12), 126602.
  • Mihailetchi, V.; Blom, P.; Hummelen, J.; Rispens, M., Cathode dependence of the open- circuit voltage of polymer: fullerene bulk heterojunction solar cells. Journal of Applied Physics 2003, 94 (10), 6849-6854.
  • Michel, J. C.; Riviere, L. M.; BellonFontaine, M. N., Measurement of the wettability of organic materials in relation to water content by the capillary rise method. European journal of soil science 2001, 52 (3), 459-467.
  • Meier, M.; Karg, S.; Riess, W., Light-emitting diodes based on poly-p-phenylene-vinylene: II. Impedance spectroscopy. Journal of Applied Physics 1997, 82 (4), 1961-1966.
  • Martinez, L.; Bernechea, M.; de Arquer, F.; Konstantatos, G., Near IRSensitive, Nontoxic, Polymer/Nanocrystal Solar Cells Employing Bi2S3 as the Electron Acceptor. Advanced Energy Materials 2011, 1 (6), 1029-1035.
  • Maria, A.; Cyr, P. W.; Klem, E. J.; Levina, L.; Sargent, E. H., Solution-processed infrared photovoltaic devices with> 10% monochromatic internal quantum efficiency. Applied Physics Letters 2005, 87 (21), 213112.
  • Maraghechi, P.; Labelle, A. J.; Kirmani, A. R.; Lan, X.; Adachi, M. M.; Thon, S. M.; Hoogland, S.; Lee, A.; Ning, Z.; Fischer, A., The donor-supply electrode enhances performance in colloidal quantum dot solar cells. ACS nano 2013, 7 (7), 6111-6116.
  • Ma, W.; Yang, C.; Gong, X.; Lee, K.; Heeger, A. J., Thermally stable, efficient polymer solar cells with nanoscale control of the interpenetrating network morphology. Advanced Functional Materials 2005, 15 (10), 1617-1622.
  • Liljeroth, P.; Overgaag, K.; Urbieta, A.; Grandidier, B.; Hickey, S. G.; Vanmaekelbergh, D., Variable orbital coupling in a two-dimensional quantum-dot solid probed on a local scale. Physical review letters 2006, 97 (9), 096803.
  • Liang, Y.; Xu, Z.; Xia, J.; Tsai, S. T.; Wu, Y.; Li, G.; Ray, C.; Yu, L., For the bright future bulk heterojunction polymer solar cells with power conversion efficiency of 7.4%. Advanced Materials 2010, 22 (20), E135-E138.
  • Li, Z.; McNeill, C. R., Transient photocurrent measurements of PCDTBT: PC70BM and PCPDTBT: PC70BM Solar Cells: Evidence for charge trapping in efficient polymer/fullerene blends. Journal of Applied Physics 2011, 109 (7), 074513.
  • Li, G.; Shrotriya, V.; Yao, Y.; Huang, J.; Yang, Y., Manipulating regioregular poly (3- hexylthiophene):[6, 6]-phenyl-C61-butyric acid methyl ester blendsroute towards high efficiency polymer solar cells. Journal of Materials Chemistry 2007, 17 (30), 3126-3140.
  • Li, G.; Shrotriya, V.; Huang, J.; Yao, Y.; Moriarty, T.; Emery, K.; Yang, Y., High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nature materials 2005, 4 (11), 864-868.
  • Lee, K.; Chang, Y.; Kim, J. Y., Optical spectroscopic characterization of plasma-polymerized thin films. Thin solid films 2003, 423 (2), 131-135.
  • Kwong, C.; Choy, W.; Djurii, A.; Chui, P.; Cheng, K.; Chan, W., Poly (3-hexylthiophene): TiO2 nanocomposites for solar cell applications. Nanotechnology 2004, 15 (9), 1156.
  • Kuwabara, T.; Kawahara, Y.; Yamaguchi, T.; Takahashi, K., Characterization of inverted-type organic solar cells with a ZnO layer as the electron collection electrode by ac impedance spectroscopy. ACS applied materials & interfaces 2009, 1 (10), 2107-2110.
  • Klem, E. J.; MacNeil, D. D.; Cyr, P. W.; Levina, L.; Sargent, E. H., Efficient solution- processed infrared photovoltaic cells: Planarized all-inorganic bulk heterojunction devices via inter- quantum-dot bridging during growth from solution. Applied physics letters 2007, 90 (18), 183113.
  • Kim, Y.; Choulis, S. A.; Nelson, J.; Bradley, D. D.; Cook, S.; Durrant, J. R., Device annealing effect in organic solar cells with blends of regioregular poly (3-hexylthiophene) and soluble fullerene. Applied Physics Letters 2005, 86 (6), 063502-063502-3.
  • Kim, S. J.; Kim, W. J.; Sahoo, Y.; Cartwright, A. N.; Prasad, P. N., Multiple exciton generation and electrical extraction from a PbSe quantum dot photoconductor. Applied Physics Letters 2008, 92 (3), 031107.
  • Kim, J. Y.; Lee, K.; Coates, N. E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A. J., Efficient tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317 (5835), 222-225.
  • Kim, G.-H.; Song, H.-K.; Kim, J. Y., The effect of introducing a buffer layer to polymer solar cells on cell efficiency. Solar Energy Materials and Solar Cells 2011, 95 (4), 1119-1122.
  • Kim, G. H.; Walker, B.; Kim, H. B.; Kim, J. Y.; Sargent, E. H.; Park, J., Inverted Colloidal Quantum Dot Solar Cells. Advanced Materials 2014.
  • Katz, E.; Faiman, D.; Tuladhar, S.; Kroon, J.; Wienk, M.; Fromherz, T.; Padinger, F.; Brabec, C.; Sariciftci, N., Temperature dependence for the photovoltaic device parameters of polymer- fullerene solar cells under operating conditions. Journal of Applied Physics 2001, 90 (10), 5343-5350.
  • Kamat, P. V., Quantum dot solar cells. Semiconductor nanocrystals as light harvesters†. The Journal of Physical Chemistry C 2008, 112 (48), 18737-18753.
  • Jenekhe, S. A.; Yi, S., Efficient photovoltaic cells from semiconducting polymer heterojunctions. Applied Physics Letters 2000, 77 (17), 2635-2637.
  • Huynh, W. U.; Dittmer, J. J.; Alivisatos, A. P., Hybrid nanorod-polymer solar cells. science 2002, 295 (5564), 2425-2427.
  • Hoppe, H.; Glatzel, T.; Niggemann, M.; Schwinger, W.; Schaeffler, F.; Hinsch, A.; Lux-Steiner,M. C.; Sariciftci, N., Efficiency limiting morphological factors of MDMO-PPV: PCBM plasticsolar cells. Thin solid films 2006, 511, 587-592.
  • Hines, M. A.; Scholes, G. D., Colloidal PbS nanocrystals with sizetunable nearinfrared emission: observation of postsynthesis selfnarrowing of the particle size distribution. Advanced Materials 2003, 15 (21), 1844-1849.
  • Heremans, P.; Cheyns, D.; Rand, B. P., Strategies for increasing the efficiency of heterojunction organic solar cells: material selection and device architecture. Accounts of chemical research 2009, 42 (11), 1740-1747.
  • He, Z.; Zhong, C.; Su, S.; Xu, M.; Wu, H.; Cao, Y., Enhanced power-conversion efficiency in polymer solar cells using an inverted device structure. Nature Photonics 2012, 6 (9), 591-595.
  • Gur, I.; Fromer, N. A.; Chen, C.-P.; Kanaras, A. G.; Alivisatos, A. P., Hybrid solar cells with prescribed nanoscale morphologies based on hyperbranched semiconductor nanocrystals. Nano Letters 2007, 7 (2), 409-414.
  • Gupta, D.; Mukhopadhyay, S.; Narayan, K., Fill factor in organic solar cells. Solar Energy Materials and Solar Cells 2010, 94 (8), 1309-1313.
  • Gu, G.; Garbuzov, D.; Burrows, P.; Venkatesh, S.; Forrest, S.; Thompson, M., High-external- quantum-efficiency organic light-emitting devices. Optics letters 1997, 22 (6), 396-398.
  • Gregg, B. A.; Hanna, M. C., Comparing organic to inorganic photovoltaic cells: Theory, experiment, and simulation. Journal of Applied Physics 2003, 93 (6), 3605-3614.
  • Gregg, B. A., Excitonic solar cells. The Journal of Physical Chemistry B 2003, 107 (20), 4688-4698.
  • Greenham, N. C.; Peng, X.; Alivisatos, A. P., Charge separation and transport in conjugated- polymer/semiconductor-nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B 1996, 54 (24), 17628.
  • Gledhill, S. E.; Scott, B.; Gregg, B. A., Organic and nano-structured composite photovoltaics: An overview. Journal of Materials Research 2005, 20 (12), 3167-3179.
  • Geens, W.; Aernouts, T.; Poortmans, J.; Hadziioannou, G., Organic co-evaporated films of a PPV-pentamer and C< sub> 60</sub>: model systems for donor/acceptor polymer blends. Thin Solid Films 2002, 403, 438-443.
  • Gao, J.; Perkins, C. L.; Luther, J. M.; Hanna, M. C.; Chen, H.-Y.; Semonin, O. E.; Nozik, A. J.; Ellingson, R. J.; Beard, M. C., n-Type transition metal oxide as a hole extraction layer in PbS quantum dot solar cells. Nano letters 2011, 11 (8), 3263-3266.
  • Gadisa, A.; Svensson, M.; Andersson, M. R.; Inganas, O., Correlation between oxidation potential and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene derivative. Applied Physics Letters 2004, 84 (9), 1609-1611.
  • Forrest, S. R., The path to ubiquitous and low-cost organic electronic appliances on plastic. Nature 2004, 428 (6986), 911-918.
  • Dyakonov, V., The polymer-fullerene interpenetrating network: one route to a solar cell approach. Physica E: Low-dimensional Systems and Nanostructures 2002, 14 (1), 53-60.
  • Dennler, G.; Scharber, M. C.; Brabec, C. J., PolymerFullerene BulkHeterojunction Solar Cells. Advanced Materials 2009, 21 (13), 1323-1338.
  • Dennler, G.; Scharber, M. C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C. J., Design Rules for Donors in BulkHeterojunction Tandem Solar Cells Towards 15% Energy Conversion Efficiency. Advanced Materials 2008, 20 (3), 579-583.
  • De Vos, A., Detailed balance limit of the efficiency of tandem solar cells. Journal of Physics D: Applied Physics 1980, 13 (5), 839.
  • Choi, J. J.; Wenger, W. N.; Hoffman, R. S.; Lim, Y. F.; Luria, J.; Jasieniak, J.; Marohn, J. A.; Hanrath, T., SolutionProcessed Nanocrystal Quantum Dot Tandem Solar Cells. Advanced Materials 2011, 23 (28), 3144-3148.
  • Burkhard, G. F.; Hoke, E. T.; McGehee, M. D., Accounting for interference, scattering, and electrode absorption to make accurate internal quantum efficiency measurements in organic and other thin solar cells. Advanced Materials 2010, 22 (30), 3293-3297.
  • Brus, L., Electronic wave functions in semiconductor clusters: experiment and theory. The Journal of Physical Chemistry 1986, 90 (12), 2555-2560.
  • Breeze, A.; Salomon, A.; Ginley, D.; Gregg, B.; Tillmann, H.; Horhold, H.-H., Polymer perylene diimide heterojunction solar cells. Applied physics letters 2002, 81 (16), 3085-3087.
  • Brabec, C. J.; Shaheen, S. E.; Winder, C.; Sariciftci, N. S.; Denk, P., Effect of LiF/metal electrodes on the performance of plastic solar cells. Applied Physics Letters 2002, 80 (7), 1288-1290.
  • Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C., Plastic solar cells. Advanced Functional Materials 2001, 11 (1), 15-26.
  • Brabec, C. J.; Cravino, A.; Meissner, D.; Sariciftci, N. S.; Fromherz, T.; Rispens, M. T.; Sanchez, L.; Hummelen, J. C., Origin of the open circuit voltage of plastic solar cells. Advanced Functional Materials 2001, 11 (5), 374-380.
  • Blouin, N.; Michaud, A.; Leclerc, M., A lowbandgap poly (2, 7carbazole) derivative for use in highperformance solar cells. Advanced Materials 2007, 19 (17), 2295-2300.
  • Benkstein, K. D.; Kopidakis, N.; Van de Lagemaat, J.; Frank, A., Influence of the percolation network geometry on electron transport in dye-sensitized titanium dioxide solar cells. The Journal of Physical Chemistry B 2003, 107 (31), 7759-7767.
  • Beek, W. J.; Wienk, M. M.; Janssen, R. A., Efficient hybrid solar cells from zinc oxide nanoparticles and a conjugated polymer. Advanced Materials 2004, 16 (12), 1009-1013.
  • Arkhipov, V.; Heremans, P.; Bassler, H., Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Applied Physics Letters 2003, 82 (25), 4605-4607.
  • Arachchige, I. U.; Brock, S. L., Sol-gel assembly of CdSe nanoparticles to form porous aerogel networks. Journal of the American Chemical Society 2006, 128 (24), 7964-7971.
  • Ameri, T.; Dennler, G.; Lungenschmied, C.; Brabec, C. J., Organic tandem solar cells: a review. Energy & Environmental Science 2009, 2 (4), 347-363.
  • (a) Zhou, H.; Zhang, Y.; Seifter, J.; Collins, S. D.; Luo, C.; Bazan, G. C.; Nguyen, T. Q.; Heeger, A. J., HighEfficiency Polymer Solar Cells Enhanced by Solvent Treatment. Advanced Materials 2013, 25 (11), 1646-1652; (b) Choi, H.; Ko, S.-J.; Choi, Y.; Joo, P.; Kim, T.; Lee, B. R.; Jung, J.-W.; Choi, H. J.; Cha, M.; Jeong, J.-R., Versatile surface plasmon resonance of carbon-dot- supported silver nanoparticles in polymer optoelectronic devices. Nature Photonics 2013, 7 (9), 732- 738; (c) Collins, B. A.; Li, Z.; Tumbleston, J. R.; Gann, E.; McNeill, C. R.; Ade, H., Absolute measurement of domain composition and nanoscale size distribution explains performance in PTB7: PC71BM Solar Cells. Advanced Energy Materials 2013, 3 (1), 65-74.
  • (a) You, J.; Chen, C. C.; Hong, Z.; Yoshimura, K.; Ohya, K.; Xu, R.; Ye, S.; Gao, J.; Li, G.; Yang, Y., 10.2% Power Conversion Efficiency Polymer Tandem Solar Cells Consisting of Two Identical SubCells. Advanced Materials 2013, 25 (29), 3973-3978; (b) You, J.; Dou, L.; Yoshimura, K.; Kato, T.; Ohya, K.; Moriarty, T.; Emery, K.; Chen, C.-C.; Gao, J.; Li, G., A polymer tandem solar cell with 10.6% power conversion efficiency. Nature communications 2013, 4, 1446.
  • (a) Terao, Y.; Sasabe, H.; Adachi, C., Correlation of hole mobility, exciton diffusion length, and solar cell characteristics in phthalocyanine/fullerene organic solar cells. Applied Physics Letters 2007, 90 (10), 103515-103515-3; (b) Forrest, S. R., The limits to organic photovoltaic cell efficiency. MRS bulletin 2005, 30 (01), 28-32.
  • (a) Tang, J.; Sargent, E. H., 10 Solution-processed infrared quantum dot solar cells. Colloidal Quantum Dot Optoelectronics and Photovoltaics 2013, 256; (b) Carey, G. H.; Chou, K. W.; Yan, B.; Kirmani, A. R.; Amassian, A.; Sargent, E. H., Materials processing strategies for colloidal quantum dot solar cells: advances, present-day limitations, and pathways to improvement. MRS Communications 2013, 3 (02), 83-90.
  • (a) Tang, J.; Kemp, K. W.; Hoogland, S.; Jeong, K. S.; Liu, H.; Levina, L.; Furukawa, M.; Wang, X.; Debnath, R.; Cha, D., Colloidal-quantum-dot photovoltaics using atomic-ligand passivation. Nature materials 2011, 10 (10), 765-771; (b) Ning, Z.; Ren, Y.; Hoogland, S.; Voznyy, O.; Levina, L.; Stadler, P.; Lan, X.; Zhitomirsky, D.; Sargent, E. H., AllInorganic Colloidal Quantum Dot Photovoltaics Employing SolutionPhase Halide Passivation. Advanced Materials 2012, 24 (47), 6295-6299; (c) Ip, A. H.; Thon, S. M.; Hoogland, S.; Voznyy, O.; Zhitomirsky, D.; Debnath, R.; Levina, L.; Rollny, L. R.; Carey, G. H.; Fischer, A., Hybrid passivated colloidal quantum dot solids. Nature nanotechnology 2012, 7 (9), 577-582.
  • (a) Schaller, R. D.; Klimov, V. I., High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical review letters 2004, 92 (18), 186601; (b) Murphy, J. E.; Beard, M. C.; Norman, A. G.; Ahrenkiel, S. P.; Johnson, J. C.; Yu, P.; Micic, O. I.; Ellingson, R. J.; Nozik, A. J., PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. Journal of the American Chemical Society 2006, 128 (10), 3241-3247; (c) Schaller, R. D.; Agranovich, V. M.; Klimov, V. I., High-efficiency carrier multiplication through direct photogeneration of multi- excitons via virtual single-exciton states. Nature physics 2005, 1 (3), 189-194; (d) Schaller, R. D.; Sykora, M.; Pietryga, J. M.; Klimov, V. I., Seven excitons at a cost of one: redefining the limits for conversion efficiency of photons into charge carriers. Nano Letters 2006, 6 (3), 424-429; (e) Shabaev, A.; Efros, A. L.; Nozik, A., Multiexciton generation by a single photon in nanocrystals. Nano letters 2006, 6 (12), 2856-2863.
  • (a) Peumans, P.; Forrest, S., Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Applied Physics Letters 2001, 79 (1), 126-128; (b) Xue, J.; Uchida, S.; Rand, B. P.; Forrest, S. R., 4.2% efficient organic photovoltaic cells with low series resistances. Applied Physics Letters 2004, 84 (16), 3013-3015.
  • (a) Peumans, P.; Bulovi, V.; Forrest, S., Efficient photon harvesting at high optical intensities in ultrathin organic double-heterostructure photovoltaic diodes. Applied Physics Letters 2000, 76 (19), 2650-2652; (b) Chan, M.; Lai, S.; Fung, M.; Lee, C.; Lee, S., Doping-induced efficiency enhancement in organic photovoltaic devices. Applied physics letters 2007, 90 (2), 023504- 023504-3.
  • (a) Pettersson, L. A.; Roman, L. S.; Inganas, O., Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. Journal of Applied Physics 1999, 86 (1), 487-496; (b) Rostalski, J.; Meissner, D., Photocurrent spectroscopy for the investigation of charge carrier generation and transport mechanisms in organic p/n-junction solar cells. Solar energy materials and solar cells 2000, 63 (1), 37-47.
  • (a) Park, J. S.; Lee, J. M.; Hwang, S. K.; Lee, S. H.; Lee, H.-J.; Lee, B. R.; Park, H. I.; Kim, J.-S.; Yoo, S.; Song, M. H., A ZnO/N-doped carbon nanotube nanocomposite charge transport layer for high performance optoelectronics. Journal of Materials Chemistry 2012, 22 (25), 12695-12700; (b) Goh, C.; Scully, S. R.; McGehee, M. D., Effects of molecular interface modification in hybrid organic-inorganic photovoltaic cells. Journal of Applied Physics 2007, 101 (11), 114503; (c) Choi, H.; Park, J. S.; Jeong, E.; Kim, G. H.; Lee, B. R.; Kim, S. O.; Song, M. H.; Woo, H. Y.; Kim, J. Y., Combination of Titanium Oxide and a Conjugated Polyelectrolyte for HighPerformance Inverted Type Organic Optoelectronic Devices. Advanced Materials 2011, 23 (24), 2759-2763.
  • (a) Padinger, F.; Rittberger, R. S.; Sariciftci, N. S., Effects of postproduction treatment on plastic solar cells. Advanced Functional Materials 2003, 13 (1), 85-88; (b) Bao, Z.; Dodabalapur, A.; Lovinger, A. J., Soluble and processable regioregular poly (3hexylthiophene) for thin film fieldeffect transistor applications with high mobility. Applied Physics Letters 1996, 69 (26), 4108-4110.
  • (a) O’Regan, B.; Gratzel, M., Low cost and highly efficient solar cells based on the sensitization of colloidal titanium dioxide. Nature 1991, 335 (24), 737-740; (b) Gratzel, M., Photoelectrochemical cells. Nature 2001, 414 (6861), 338-344; (c) Gratzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4 (2), 145-153; (d) Gratzel, M., Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. Journal of Photochemistry and Photobiology A: Chemistry 2004, 164 (1), 3-14; (e) Gratzel, M., Molecular photovoltaics that mimic photosynthesis. Pure and Applied Chemistry 2001, 73 (3), 459- 467.
  • (a) Ning, Z.; Zhitomirsky, D.; Adinolfi, V.; Sutherland, B.; Xu, J.; Voznyy, O.; Maraghechi, P.; Lan, X.; Hoogland, S.; Ren, Y., Graded doping for enhanced colloidal quantum dot photovoltaics. Advanced materials 2013, 25 (12), 1719-1723; (b) Lan, X.; Bai, J.; Masala, S.; Thon, S. M.; Ren, Y.; Kramer, I. J.; Hoogland, S.; Simchi, A.; Koleilat, G. I.; PazSoldan, D., SelfAssembled, Nanowire Network Electrodes for Depleted Bulk Heterojunction Solar Cells. Advanced Materials 2013, 25 (12), 1769-1773.
  • (a) Nardes, A. M.; Kemerink, M.; Janssen, R. A.; Bastiaansen, J. A.; Kiggen, N. M.; Langeveld, B. M.; van Breemen, A. J.; de Kok, M. M., Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films. Advanced Materials 2007, 19 (9), 1196-1200; (b) Hwang, J.; Amy, F.; Kahn, A., Spectroscopic study on sputtered PEDOT PSS: Role of surface PSS layer. Organic electronics 2006, 7 (5), 387-396.
  • (a) Murgia, M.; Biscarini, F.; Cavallini, M.; Taliani, C.; Ruani, G., Intedigitated pn junction: A route to improve the efficiency in organic photovoltaic cells. Synthetic metals 2001, 121 (1-3), 1533-1534; (b) Ruani, G.; Fontanini, C.; Murgia, M.; Taliani, C., Weak intrinsic charge transfer complexes: A new route for developing wide spectrum organic photovoltaic cells. The Journal of chemical physics 2002, 116 (4), 1713-1719; (c) Toccoli, T.; Boschetti, A.; Corradi, C.; Guerini, L.; Mazzola, M.; Iannotta, S., Co-deposition of phthalocyanines and fullerene by SuMBE: characterization and prototype devices. Synthetic metals 2003, 138 (1), 3-7.
  • (a) McDonald, S. A.; Konstantatos, G.; Zhang, S.; Cyr, P. W.; Klem, E. J.; Levina, L.; Sargent, E. H., Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature materials 2005, 4 (2), 138-142; (b) Zhang, S.; Cyr, P.; McDonald, S.; Konstantatos, G.; Sargent, E., Enhanced infrared photovoltaic efficiency in PbS nanocrystal/semiconducting polymer composites: 600-fold increase in maximum power output via control of the ligand barrier. Applied Physics Letters 2005, 87 (23), 233101; (c) Klimov, V.; Mikhailovsky, A.; McBranch, D.; Leatherdale, C.; Bawendi, M., Quantization of multiparticle Auger rates in semiconductor quantum dots. Science 2000, 287 (5455), 1011-1013.
  • (a) Liu, M.; Guyot-Sionnest, P., Mechanism of silver (I)-assisted growth of gold nanorods and bipyramids. The Journal of Physical Chemistry B 2005, 109 (47), 22192-22200; (b) Law, M.; Luther, J. M.; Song, Q.; Hughes, B. K.; Perkins, C. L.; Nozik, A. J., Structural, optical, and electrical properties of PbSe nanocrystal solids treated thermally or with simple amines. Journal of the American Chemical Society 2008, 130 (18), 5974-5985; (c) Luther, J. M.; Law, M.; Song, Q.; Perkins, C. L.; Beard, M. C.; Nozik, A. J., Structural, optical, and electrical properties of self-assembled films of PbSe nanocrystals treated with 1, 2-ethanedithiol. ACS nano 2008, 2 (2), 271-280.
  • (a) Kramer, I. J.; Sargent, E. H., The Architecture of Colloidal Quantum Dot Solar Cells: Materials to Devices. Chemical reviews 2013, 114 (1), 863-882; (b) Zhang, J.; Gao, J.; Miller, E. M.; Luther, J. M.; Beard, M. C., Diffusion Controlled Synthesis of PbS and PbSe Quantum Dots with In- Situ Halide Passivation for Quantum Dot Solar Cells. ACS nano 2013.
  • (a) Kippelen, B.; Bredas, J.-L., Organic photovoltaics. Energy & Environmental Science 2009, 2 (3), 251-261; (b) Wohrle, D.; Meissner, D., Organic solar cells. Advanced Materials 1991, 3 (3), 129-138.
  • (a) Kim, J.; Jung, J.; Lee, D.; Joo, J., Enhancement of electrical conductivity of poly (3, 4- ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synthetic Metals 2002, 126 (2), 311-316; (b) Ouyang, J.; Xu, Q.; Chu, C.-W.; Yang, Y.; Li, G.; Shinar, J., On the mechanism of conductivity enhancement in poly (3, 4-ethylenedioxythiophene): poly (styrene sulfonate) film through solvent treatment. Polymer 2004, 45 (25), 8443-8450.
  • (a) Kim, J. Y.; Kim, S. H.; Lee, H. H.; Lee, K.; Ma, W.; Gong, X.; Heeger, A. J., New Architecture for highefficiency polymer photovoltaic cells using solutionbased titanium oxide as an optical spacer. Advanced Materials 2006, 18 (5), 572-576; (b) Aad, G.; Abajyan, T.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdelalim, A.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M., Observation of a new particle in the search for the Standard Model Higgs boson with the ATLAS detector at the LHC. Physics Letters B 2012, 716 (1), 1-29.
  • (a) Hyun, B.; Zhong, Y.; Bartnik, A.; Sun, L.; Abrun, H., a, FW Wise, JD Goodreau, JR Matthews, TM Leslie, NF Borrelli. ACS Nano 2008, 2, 2206; (b) Luther, J. M.; Gao, J.; Lloyd, M. T.; Semonin, O. E.; Beard, M. C.; Nozik, A. J., Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Advanced materials 2010, 22 (33), 3704-3707.
  • (a) Hoppea, H.; Sariciftci, N. S., Organic solar cells: An overview. J. Mater. Res 2004, 19 (7), 1925; (b) Gunes, S.; Neugebauer, H.; Sariciftci, N. S., Conjugated polymer-based organic solar cells. Chemical reviews 2007, 107 (4), 1324-1338.
  • (a) Hoppe, H.; Niggemann, M.; Winder, C.; Kraut, J.; Hiesgen, R.; Hinsch, A.; Meissner, D.; Sariciftci, N. S., Nanoscale Morphology of Conjugated Polymer/FullereneBased Bulk Heterojunction Solar Cells. Advanced Functional Materials 2004, 14 (10), 1005-1011; (b) Arias, A.; MacKenzie, J.; Stevenson, R.; Halls, J.; Inbasekaran, M.; Woo, E.; Richards, D.; Friend, R., Photovoltaic performance and morphology of polyfluorene blends: a combined microscopic and photovoltaic investigation. Macromolecules 2001, 34 (17), 6005-6013.
  • (a) Halls, J.; Pichler, K.; Friend, R.; Moratti, S.; Holmes, A., Exciton diffusion and dissociation in a poly (pphenylenevinylene)/C60 heterojunction photovoltaic cell. Applied Physics Letters 1996, 68 (22), 3120-3122; (b) Halls, J.; Friend, R., The photovoltaic effect in a poly (p- phenylenevinylene)/perylene heterojunction. Synthetic Metals 1997, 85 (1), 1307-1308.
  • (a) Guyot-Sionnest, P.; Shim, M.; Matranga, C.; Hines, M., Intraband relaxation in CdSe quantum dots. Physical Review B 1999, 60 (4), R2181; (b) Ellingson, R. J.; Blackburn, J. L.; Yu, P.; Rumbles, G.; Micic, O. I.; Nozik, A. J., Excitation energy dependent efficiency of charge carrier relaxation and photoluminescence in colloidal InP quantum dots. The Journal of Physical Chemistry B 2002, 106 (32), 7758-7765; (c) Blackburn, J. L.; Ellingson, R. J.; Micic, O. I.; Nozik, A. J., Electron relaxation in colloidal InP quantum dots with photogenerated excitons or chemically injected electrons. The Journal of Physical Chemistry B 2003, 107 (1), 102-109.
  • (a) Gur, I.; Fromer, N. A.; Geier, M. L.; Alivisatos, A. P., Air-stable all-inorganic nanocrystal solar cells processed from solution. Science 2005, 310 (5747), 462-465; (b) Luther, J. M.; Law, M.; Beard, M. C.; Song, Q.; Reese, M. O.; Ellingson, R. J.; Nozik, A. J., Schottky solar cells based on colloidal nanocrystal films. Nano letters 2008, 8 (10), 3488-3492.
  • (a) Ellingson, R. J.; Beard, M. C.; Johnson, J. C.; Yu, P.; Micic, O. I.; Nozik, A. J.; Shabaev, A.; Efros, A. L., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano letters 2005, 5 (5), 865-871; (b) Congreve, D. N.; Lee, J.; Thompson, N. J.; Hontz, E.; Yost, S. R.; Reusswig, P. D.; Bahlke, M. E.; Reineke, S.; Van Voorhis, T.; Baldo, M. A., External Quantum Efficiency Above 100% in a Singlet-Exciton-Fission-Based Organic Photovoltaic Cell. Science 2013, 340 (6130), 334-337.
  • (a) Dittmer, J.; Lazzaroni, R.; Leclere, P.; Moretti, P.; Granstrom, M.; Petritsch, K.; Marseglia, E.; Friend, R.; Bredas, J.; Rost, H., Crystal network formation in organic solar cells. Solar energy materials and solar cells 2000, 61 (1), 53-61; (b) Dittmer, J. J.; Marseglia, E. A.; Friend, R. H., Electron trapping in dye/polymer blend photovoltaic cells. Advanced Materials 2000, 12 (17), 1270- 1274.
  • (a) De Gennes, P.-G., Scaling concepts in polymer physics. Cornell university press: 1979; (b) Tadmor, R., Line energy and the relation between advancing, receding, and young contact angles. Langmuir 2004, 20 (18), 7659-7664.
  • (a) Cole, K. S.; Baker, R. F., Longitudinal impedance of the squid giant axon. The Journal of general physiology 1941, 24 (6), 771-788; (b) Cole, K. S., Membranes, ions, and impulses: a chapter of classical biophysics. Univ of California Press: 1968; Vol. 5.
  • (a) Choi, H.; Lee, J.-P.; Ko, S.-J.; Jung, J.-W.; Park, H.; Yoo, S.; Park, O.; Jeong, J.-R.; Park, S.; Kim, J. Y., Multipositional silica-coated silver nanoparticles for high-performance polymer solar cells. Nano letters 2013, 13 (5), 2204-2208; (b) Gu, C.; Chen, Y.; Zhang, Z.; Xue, S.; Sun, S.; Zhong, C.; Zhang, H.; Lv, Y.; Li, F.; Huang, F., Achieving High Efficiency of PTB7Based Polymer Solar Cells via Integrated Optimization of Both Anode and Cathode Interlayers. Advanced Energy Materials 2014; (c) Cheng, P.; Li, Y.; Zhan, X., Efficient ternary blend polymer solar cells with indene-C 60 bisadduct as an electron-cascade acceptor. Energy & Environmental Science 2014.
  • (a) Chen, H.-Y.; Hou, J.; Zhang, S.; Liang, Y.; Yang, G.; Yang, Y.; Yu, L.; Wu, Y.; Li, G., Polymer solar cells with enhanced open-circuit voltage and efficiency. Nature Photonics 2009, 3 (11), 649-653; (b) Alivisatos, A. P., Perspectives on the physical chemistry of semiconductor nanocrystals. The Journal of Physical Chemistry 1996, 100 (31), 13226-13239.
  • (a) Bredas, J.-L.; Norton, J. E.; Cornil, J.; Coropceanu, V., Molecular understanding of organic solar cells: the challenges. Accounts of chemical research 2009, 42 (11), 1691-1699; (b) Peumans, P.; Yakimov, A.; Forrest, S. R., Small molecular weight organic thin-film photodetectors and solar cells. Journal of Applied Physics 2003, 93 (7), 3693-3723.