박사

전기화학적 합성법을 이용한 칼코지나이드 반도체 합성과 그 응용에 관한 연구 : Electrochemical Synthesis of Chalcogenide Semiconductors and Their Applications

김동욱 2015년
논문상세정보
' 전기화학적 합성법을 이용한 칼코지나이드 반도체 합성과 그 응용에 관한 연구 : Electrochemical Synthesis of Chalcogenide Semiconductors and Their Applications' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • chalcogenides
  • electrochemical synthesis
  • gas sensors
  • semiconductors
  • solar cells
  • tfts
  • thin films
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
225 0

0.0%

' 전기화학적 합성법을 이용한 칼코지나이드 반도체 합성과 그 응용에 관한 연구 : Electrochemical Synthesis of Chalcogenide Semiconductors and Their Applications' 의 참고문헌

  • Zinc telluride (ZnTe) electrical and thermal transport, carrier mobilities, in II-VI and I-VII Compounds; Semimagnetic Compounds, O. Madelung, U. Rossler, and M. Schulz, Editors. 1999, Springer Berlin Heidelberg. p. 1-9.
  • Zhang, X.T., et al., Structure and photoluminescence of ZnSe nanoribbons grown by metal organic chemical vapor deposition. Applied Physics Letters, 2004. 84(14): p. 2641-2643.
  • Zhang, D., et al., Detection of NO2 down to ppb Levels Using Individual and Multiple In2O3 Nanowire Devices. Nano Letters, 2004. 4(10): p. 1919-1924.
  • Zha, Y., M. Waldmann, and C.B. Arnold, A review on solution processing of chalcogenide glasses for optical components. Optical Materials Express, 2013. 3(9): p. 1259-1272.
  • Yuan, W., et al., High-Performance NO2 Sensors Based on Chemically Modified Graphene. Advanced Materials, 2013. 25(5): p. 766-771.
  • Yu, K.H. and J.H. Chen, Enhancing Solar Cell Efficiencies through 1-D Nanostructures. Nanoscale Research Letters, 2009. 4(1): p. 1-10.
  • Yoo, H., et al., The expressions of carbonic anhydrase 9 and vascular endothelial growth factor in astrocytic tumors predict a poor prognosis. International Journal of Molecular Medicine, 2010. 26(1): p. 3-9.
  • Yao, T., et al., High quality ZnSe thin films grown by molecular beam epitaxy. Applied Physics Letters, 1983. 43(5): p. 499-501.
  • Yamazoe, N., G. Sakai, and K. Shimanoe, Oxide Semiconductor Gas Sensors. Catalysis Surveys from Asia, 2003. 7(1): p. 63-75.
  • Xie, W., et al., Blue/green pn junction electroluminescence from ZnSe based multiple quantum well structures. Applied Physics Letters, 1992. 60(4): p. 463- 465.
  • Xia, Y., et al., One-Dimensional Nanostructures: Synthesis, Characterization, and Applications. Advanced Materials, 2003. 15(5): p. 353-389.
  • Wei, S.-H., S. Zhang, and A. Zunger, Effects of Ga addition to CuInSe 2 on its electronic, structural, and defect properties. Applied physics letters, 1998. 72(24): p. 3199-3201.
  • Wang, Y. and J.T.W. Yeow, A Review of Carbon Nanotubes-Based Gas Sensors. Journal of Sensors, 2009. 2009.
  • Wang, W., et al., ZnO/ZnSe/ZnTe Heterojunctions for ZnTe-Based Solar Cells. Journal of Electronic Materials, 2011. 40(8): p. 1674-1678.
  • Wang, C., et al., CuIn(S,Se)2 thin films prepared by selenization and sulfurization of sputtered Cu-In precursors. Vacuum, 2013. 92(0): p. 7-12.
  • Triboulet, R., K. Pham Van, and G. Didier, "Cold travelling heater method", a novel technique of synthesis, purification and growth of CdTe and ZnTe. Journal of Crystal Growth, 1990. 101(1-4): p. 216-220.
  • Touskova, J., D. Kindl, and J. Tousek, Preparation and characterization of CdS/CdTe thin film solar cells. Thin Solid Films, 1997. 293(1-2): p. 272-276.
  • Thompson, T., A blue emitting ZnSe LED operating by impact ionization. Semiconductor Science and Technology, 1991. 6(10): p. 1015.
  • Taunier, S., et al., Cu(In,Ga)(S,Se)2 solar cells and modules by electrodeposition. Thin Solid Films, 2005. 480-481(0): p. 526-531.
  • Takafumi, Y., M. Yunosuke, and M. Shigeru, Photoluminescence Properties of ZnSe Thin Films Grown by Molecular Beam Epitaxy. Japanese Journal of Applied Physics, 1981. 20(10): p. L741.
  • Stanzl, H., et al., Low-pressure metalorganic vapor phase epitaxy of ZnSe-based light emitting diodes. Journal of Crystal Growth, 1994. 145(1-4): p. 918-923.
  • Spurgeon, J.M., H.A. Atwater, and N.S. Lewis, A comparison between the behavior of nanorod array and planar Cd(Se, Te) photoelectrodes. Journal of Physical Chemistry C, 2008. 112(15): p. 6186-6193.
  • SpiNulescu-Carnaru, I. ZnTe and InSb thin-film transistors. Electronics Letters, 1967. 3, 268-269.
  • Sorenson, T.A., et al., Formation of and phase transitions in electrodeposited tellurium atomic layers on Au(1 1 1). Surface Science, 2001. 470(3): p. 197-214.
  • Singh, K. and R.K. Pathak, Electrosynthesis and impedance studies on zinc selenide. Electrochimica Acta, 1994. 39(18): p. 2693-2697. 57. Bouroushian, M., et al., Electrochemical formation of zinc selenide from acidic aqueous solutions. Journal of Solid State Electrochemistry, 2002. 6(4): p. 272-278.
  • Siemer, K., et al., Efficient CuInS2 solar cells from a rapid thermal process (RTP). Solar Energy Materials and Solar Cells, 2001. 67(1-4): p. 159-166.
  • Siebentritt, S., Wide gap chalcopyrites: material properties and solar cells. Thin Solid Films, 2002. 403: p. 1-8.
  • Sella, C., P. Boncorps, and J. Vedel, The Electrodeposition Mechanism of CdTe from Acidic Aqueous Solutions. Journal of The Electrochemical Society, 1986. 133(10): p. 2043-2047.
  • Schwartz, R. and M. Lammert. Silicon solar cells for high concentration applications. in Electron Devices Meeting, 1975 International. 1975. IEEE.
  • Schmid, D., M. Ruckh, and H.W. Schock, A comprehensive characterization of the interfaces in Mo/CIS/CdS/ZnO solar cell structures. Solar Energy Materials and Solar Cells, 1996. 41-42(0): p. 281-294.
  • Schedin, F., et al., Detection of individual gas molecules adsorbed on graphene. Nat Mater, 2007. 6(9): p. 652-655.
  • Sartz, W.E., K.J. Wynne, and D.M. Hercules, X-ray photoelectron spectroscopic investigation of Group VIA elements. Analytical Chemistry, 1971. 43(13): p. 1884-1887.
  • Sarabyreintjes, A., et al., On the Mechanism of the Cathodic Electrodeposition of Cadmium Telluride. Journal of The Electrochemical Society, 1993. 140(10): p. 2880-2888.
  • Sanyal, G., et al., A comparative study of CdTe films prepared by different techniques. Solar Energy Materials, 1990. 20(5): p. 395-404.
  • Sanghera, J. and I. Aggarwal, Active and passive chalcogenide glass optical fibers for IR applications: a review. Journal of non-crystalline solids, 1999. 256: p. 6-16.
  • Sanchez, E.A., M. Waldmann, and C.B. Arnold, Chalcogenide glass microlenses by inkjet printing. Applied Optics, 2011. 50(14): p. 1974-1978.
  • Ryu, Y.R., et al., ZnSe and ZnO film growth by pulsed-laser deposition. Applied Surface Science, 1998. 127-129(0): p. 496-499.
  • Rumyantsev, S., et al., Selective Gas Sensing with a Single Pristine Graphene Transistor. Nano Letters, 2012. 12(5): p. 2294-2298.
  • Romeo, N., et al., Recent progress on CdTe/CdS thin film solar cells. Solar Energy, 2004. 77(6): p. 795-801.
  • Romeo, N., et al., A highly efficient and stable CdTe/CdS thin film solar cell. Solar Energy Materials and Solar Cells, 1999. 58(2): p. 209-218.
  • Rockett, A.A., Current status and opportunities in chalcopyrite solar cells. Current Opinion in Solid State and Materials Science, 2010. 14(6): p. 143-148.
  • Riveros, G., et al., Electrodeposition of Epitaxial ZnSe Films on InP and GaAs from an Aqueous Zinc Sulfate-Selenosulfate Solution. Advanced Materials, 2002. 14(18): p. 1286-1290.
  • Riveros, G., et al., Electrodeposition and characterization of ZnSe semiconductor thin films. Solar Energy Materials and Solar Cells, 2001. 70(3): p. 255-268.
  • Ricco, A.J., H.S. White, and M.S. Wrighton, X-ray photoelectron and Auger electron spectroscopic study of the CdTe surface resulting from various surface pretreatments: Correlation of photoelectrochemical and capacitance-potential behavior with surface chemical composition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1984. 2(2): p. 910-915.
  • Regulacio, M.D., et al., Magnetic properties of lanthanide chalcogenide semiconducting nanoparticles. Journal of the American Chemical Society, 2006. 128(34): p. 11173-11179.
  • Razykov, T.M., et al., Solar photovoltaic electricity: Current status and future prospects. Solar Energy, 2011. 85(8): p. 1580-1608.
  • Rao, G.K., K.V. Bangera, and G.K. Shivakumar, Studies on the photoconductivity of vacuum deposited ZnTe thin films. Materials Research Bulletin, 2010. 45(10): p. 1357-1360.
  • Rao, F., et al., Multilevel data storage characteristics of phase change memory cell with doublelayer chalcogenide films (Ge2Sb2Te5 and Sb2Te3). Japanese journal of applied physics, 2007. 46(1L): p. L25.
  • Poudel, B., et al., High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys. Science, 2008. 320(5876): p. 634-638.
  • Pirovano, A., et al., Low-field amorphous state resistance and threshold voltage drift in chalcogenide materials. Electron Devices, IEEE Transactions on, 2004. 51(5): p. 714-719.
  • Pinch, H. and S. Berger, The effects of non-stoichiometry on the magnetic properties of cadmium chromium chalcogenide spinels. Journal of Physics and Chemistry of Solids, 1968. 29(12): p. 2091-2099.
  • Pei, Y.-L. and Y. Liu, Electrical and thermal transport properties of Pb-based chalcogenides: PbTe, PbSe, and PbS. Journal of Alloys and Compounds, 2012. 514(0): p. 40-44.
  • Paunovic, M., Fundamentals of Electrochemical Deposition 2nd. 2006: Wiley- Interscinnce.
  • Panicker, M.P.R., M. Knaster, and F.A. Kroger, Cathodic Deposition of Cdte from Aqueous-Electrolytes. Journal of the Electrochemical Society, 1978. 125(4): p. 566-572.
  • Palik, E.D., Handbook of optical constants of solids. Vol. 3. 1998: Academic press.
  • Pal, A., et al., Electrodeposited CdTe films: Space charge limited conduction. Vacuum, 1995. 46(2): p. 147-150.
  • Owen, A. and J. Robertson, Electronic properties of some simple chalcogenide glasses. Journal of Non-Crystalline Solids, 1970. 2: p. 40-51.
  • Ohkawa, K., A. Ueno, and T. Mitsuyu, Molecular-beam epitaxial growth of p-and n-type ZnSe homoepitaxial layers. Journal of Crystal Growth, 1992. 117(1): p. 375-384.
  • Ogusu, K., et al., Linear and nonlinear optical properties of Ag-As-Se chalcogenide glasses for all-optical switching. Optics letters, 2004. 29(3): p. 265- 267.
  • Nomura, K., et al., Room-temperature fabrication of transparent flexible thin-film transistors using amorphous oxide semiconductors. Nature, 2004. 432(7016): p. 488-492.
  • Niki, S., et al., CIGS absorbers and processes. Progress in Photovoltaics, 2010. 18(6): p. 453-466.
  • Neumann-Spallart, M. and C. Konigstein, Electrodeposition of zinc telluride. Thin Solid Films, 1995. 265(1-2): p. 33-39.
  • Neu, W., et al., Low-cost multicrystalline back-contact silicon solar cells with screen printed metallization. Solar Energy Materials and Solar Cells, 2002. 74(1- 4): p. 139-146.
  • Natarajan, C., et al., Electrodeposition of zinc selenide. Thin Solid Films, 1994. 237(1-2): p. 118-123.
  • Nakada, T., et al., Improved Cu(In,Ga)(S,Se)(2) thin film solar cells by surface sulfurization. Solar Energy Materials and Solar Cells, 1997. 49(1-4): p. 285-290.
  • Nagata, S., et al., Co-planar bi-metallic interdigitated electrode substrate for spin-coated organic solar cells. Solar Energy Materials and Solar Cells, 2011. 95(7): p. 1594-1597.
  • Murphy, D. and F. Trumbore, Metal chalcogenides as reversible electrodes in nonaqueous lithium batteries. Journal of Crystal Growth, 1977. 39(1): p. 185-199.
  • Murase, K., et al., Electrodeposition of CdTe from Basic Aqueous Solutions Containing Ethylenediamine. Journal of The Electrochemical Society, 2001. 148(3): p. C203-C210.
  • Murali, K.R. and B. Jayasuthaa, Brush electrodeposited CdSexTe1-x thin films and their properties. Solar Energy, 2009. 83(6): p. 891-895.
  • Mossadegh, R., et al., Fabrication of single-mode chalcogenide optical fiber. Lightwave Technology, Journal of, 1998. 16(2): p. 214-217.
  • Mitzi, D.B., et al., High-mobility ultrathin semiconducting films prepared by spin coating. Nature, 2004. 428(6980): p. 299-303.
  • Mitzi, D.B., M. Copel, and S.J. Chey, Low Voltage Transistor Employing a High Mobility SpinCoated Chalcogenide Semiconductor. Advanced Materials, 2005. 17(10): p. 1285-1289.
  • Mitzi, D.B., M. Copel, and C.E. Murray, High Mobility pType Transistor Based on a Spin Coated Metal Telluride Semiconductor. Advanced Materials, 2006. 18(18): p. 2448-2452.
  • Mitchell, K.W., A.L. Fahrenbruch, and R.H. Bube, Evaluation of the CdS/CdTe heterojunction solar cell. Journal of Applied Physics, 1977. 48(10): p. 4365-4371.
  • Minemoto, T., et al., Control of conduction band offset in wide-gap Cu (In, Ga) Se< sub> 2</sub> solar cells. Solar energy materials and solar cells, 2003. 75(1): p. 121-126.
  • Miller, D.J. and D. Haneman, Preparation of Stable Efficient Cdse Films for Solar Pec Cells. Solar Energy Materials, 1981. 4(2): p. 223-231.
  • Mejia, I., et al., Fabrication and Characterization of High-Mobility Solution- Based Chalcogenide Thin-Film Transistors. Ieee Transactions on Electron Devices, 2013. 60(1): p. 327-332.
  • MacDonald, B.I., et al., Layer-by-Layer Assembly of Sintered CdSexTe1-x Nanocrystal Solar Cells. Acs Nano, 2012. 6(7): p. 5995-6004.
  • Loizos, Z., N. Spyrellis, and G. Maurin, Electrochemical Synthesis of Semiconducting Cdse Thin-Films. Thin Solid Films, 1991. 204(1): p. 139-149.
  • Liu, W., et al., 12% Efficiency CuIn(Se,S)2 Photovoltaic Device Prepared Using a Hydrazine Solution Process†. Chemistry of Materials, 2009. 22(3): p. 1010-1014.
  • Lincot, D., et al., Chalcopyrite thin film solar cells by electrodeposition. Solar Energy, 2004. 77(6): p. 725-737.
  • Lincot, D., Electrodeposition of semiconductors. Thin Solid Films, 2005. 487(1- 2): p. 40-48.
  • Lide, D.R., CRC handbook of chemistry and physics. 2004: CRC press.
  • Li, J., et al., Carbon Nanotube Sensors for Gas and Organic Vapor Detection. Nano Letters, 2003. 3(7): p. 929-933.
  • Law, M., et al., Photochemical Sensing of NO2 with SnO2 Nanoribbon Nanosensors at Room Temperature. Angewandte Chemie, 2002. 114(13): p. 2511- 2514.
  • Lavela, P., et al., Novel layered chalcogenides as electrode materials for lithium- ion batteries. Journal of power sources, 1997. 68(2): p. 704-707.
  • Lammert, M.D. and R.J. Schwartz, The interdigitated back contact solar cell: a silicon solar cell for use in concentrated sunlight. Electron Devices, IEEE Transactions on, 1977. 24(4): p. 337-342.
  • Lai, Y., et al., Cyclic voltammetry study of electrodeposition of Cu(In,Ga)Se2 thin films. Electrochimica Acta, 2009. 54(11): p. 3004-3010.
  • Kuwano, Y., S. Tsuda, and M. Ohnishi, Energy-Conversion Process of P-I-N Amorphous Si Solar-Cells. Japanese Journal of Applied Physics Part 1-Regular Papers Short Notes & Review Papers, 1982. 21(2): p. 235-241.
  • Kumar, L., et al., Characterization of CdSe< i> x</i> Te< sub> 1</sub>< i> x</i> sintered films for photovoltaic applications. Physica B: Condensed Matter, 2005. 363(1): p. 102-109.
  • Kuang, Q., et al., Enhancing the Photon- and Gas-Sensing Properties of a Single SnO 2 Nanowire Based Nanodevice by Nanoparticle Surface Functionalization. The Journal of Physical Chemistry C, 2008. 112(30): p. 11539-11544.
  • Kroger, F.A., Cathodic Deposition and Characterization of Metallic or Semiconducting Binary Alloys or Compounds. Journal of The Electrochemical Society, 1978. 125(12): p. 2028-2034.
  • Koshizaki, N. and T. Oyama, Sensing characteristics of ZnO-based NOx sensor. Sensors and Actuators B: Chemical, 2000. 66(1-3): p. 119-121.
  • Konigstein, C. and M. Neumann-Spallart, Mechanistic studies on the electrodeposition of ZnTe. Journal of The Electrochemical Society, 1998. 145(1): p. 337-343.
  • Kim, Y.H., et al., A study on photoluminescence of interface layer of ZnTe/CdTe heterostructure. Journal of Crystal Growth, 2000. 214-215: p. 225-228.
  • Kim, T.W., et al., Strain effects in CdxZn1-xTe/ZnTe double quantum-wells. Journal of Physics and Chemistry of Solids, 1999. 60(7): p. 857-860.
  • Kim, D.K., et al., Flexible and low-voltage integrated circuits constructed from high-performance nanocrystal transistors. Nat Commun, 2012. 3: p. 1216.
  • Kerschaver, E.V. and G. Beaucarne, Back contact solar cells: A review. Progress in Photovoltaics: Research and Applications, 2006. 14(2): p. 107-123.
  • Kemell, M., et al., One-step electrodeposition of Cu2-xSe and CuInSe2 thin films by the induced co-deposition mechanism. Journal of the Electrochemical Society, 2000. 147(3): p. 1080-1087.
  • Kelzenberg, M.D., et al., Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications (vol 9, pg 239, 2010). Nature Materials, 2010. 9(4): p. 368-368.
  • Kayes, B.M., H.A. Atwater, and N.S. Lewis, Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells. Journal of Applied Physics, 2005. 97(11).
  • Katayama, K., et al., ZnSe-based white LEDs. Journal of Crystal Growth, 2000. 214: p. 1064-1070.
  • Kashyout, A.B., et al., Influence of annealing temperature on the opto-electronic characteristics of znte electrodeposited semiconductors. Materials Chemistry and Physics, 1997. 51(2): p. 130-134.
  • Kang, M. and A.A. Gewirth, Influence of Additives on Copper Electrodeposition on Physical Vapor Deposited (PVD) Copper Substrates. Journal of The Electrochemical Society, 2003. 150(6): p. C426-C434.
  • Kampmann, A., et al., Investigation of the Influence of the Electrodeposition Potential on the Optical, Photoelectrochemical and Structural-Properties of as- Deposited Cdte. Journal of Electroanalytical Chemistry, 1995. 387(1-2): p. 53-64.
  • Kampmann, A. and D. Lincot, Photoelectrochemical study of thin film semiconductor heterostructures: Junction formation processes in CdS vertical bar CdTe solar cells. Journal of Electroanalytical Chemistry, 1996. 418(1-2): p. 73-81.
  • Kalita, P.K., B. Sarma, and H. Das, Structural characterization of vacuum evaporated ZnSe thin films. Bulletin of Materials Science, 2000. 23(4): p. 313- 317.
  • Jung, S., et al., Effects of Ga contents on properties of CIGS thin films and solar cells fabricated by co-evaporation technique. Current Applied Physics, 2010. 10(4): p. 990-996.
  • Jubault, M., et al., Optimization of molybdenum thin films for electrodeposited CIGS solar cells. Solar Energy Materials and Solar Cells, 2011. 95, Supplement 1(0): p. S26-S31.
  • Josell, D., et al., Three Dimensionally Structured CdTe Thin-Film Photovoltaic Devices with Self-Aligned Back-Contacts: Electrodeposition on Interdigitated Electrodes. Journal of the Electrochemical Society, 2009. 156(8): p. H654-H660.
  • Josell, D., et al., (Invited) Three-Dimensionally Structured Thin Film Heterojunction Photovoltaics on Interdigitated Back-Contacts. ECS Transactions, 2010. 28(2): p. 521-532.
  • Ji, S., et al., A High-Performance Room-Temperature NO2 Sensor Based on An Ultrathin Heterojunction Film. Advanced Materials, 2013. 25(12): p. 1755-1760.
  • Jehl, Z., et al., Thinning of CIGS solar cells: Part II: Cell characterizations. Thin Solid Films, 2011. 519(21): p. 7212-7215.
  • Jaegermann, W., A. Klein, and T. Mayer, Interface Engineering of Inorganic Thin-Film Solar Cells - Materials-Science Challenges for Advanced Physical Concepts. Advanced Materials, 2009. 21(42): p. 4196-4206.
  • Jackson, P., et al., New world record efficiency for Cu (In, Ga) Se2 thin film solar cells beyond 20%. Progress in Photovoltaics: Research and Applications, 2011. 19(7): p. 894-897.
  • Jackson, P., et al., High quality baseline for high efficiency, Cu(In1-x,Ga-x)Se-2 solar cells. Progress in Photovoltaics, 2007. 15(6): p. 507-519.
  • Ishizaki, T., et al., An investigation into the effect of ionic species on the formation of ZnTe from a citric acid electrolyte. Electrochimica Acta, 2005. 50(16-17): p. 3509-3516.
  • Ishizaki, T., T. Ohtomo, and A. Fuwa, Structural, optical and electrical properties of ZnTe thin films electrochemically deposited from a citric acid aqueous solution. Journal of Physics D-Applied Physics, 2004. 37(2): p. 255-260.
  • Ishizaki, T., T. Ohtomo, and A. Fuwa, Electrodeposition of ZnTe Film with High Current Efficiency at Low Overpotential from a Citric Acid Bath. Journal of The Electrochemical Society, 2004. 151(3): p. C161-C167.
  • Hyodo, T., et al., Preparation of macroporous SnO2 films using PMMA microspheres and their sensing properties to NOx and H2. Sensors and Actuators B: Chemical, 2005. 106(2): p. 580-590.
  • Hudgens, S. and B. Johnson, Overview of phase-change chalcogenide nonvolatile memory technology. MRS bulletin, 2004. 29(11): p. 829-832.
  • Huang, Q., A.J. Kellock, and S. Raoux, Electrodeposition of SbTe Phase-Change Alloys. Journal of the Electrochemical Society, 2008. 155(2): p. D104-D109.
  • Hsu, K.F., et al., Cubic AgPbmSbTe2+m: Bulk Thermoelectric Materials with High Figure of Merit. Science, 2004. 303(5659): p. 818-821.
  • Hou, W.W., et al., Low-temperature processing of a solution-deposited CuInSSe thin-film solar cell. Thin Solid Films, 2009. 517(24): p. 6853-6856.
  • Henriquez, R., et al., Electrochemical Deposition of ZnSe from Dimethyl Sulfoxide Solution and Characterization of Epitaxial Growth. The Journal of Physical Chemistry B, 2004. 108(35): p. 13191-13199.
  • He, Q., et al., Graphene-based electronic sensors. Chemical Science, 2012. 3(6): p. 1764-1772.
  • Hayden, B.E. and I.S. Nandhakumar, In-Situ STM Study of Te UPD Layers on Low Index Planes of Gold. The Journal of Physical Chemistry B, 1997. 101(39): p. 7751-7757.
  • Hayden, B.E. and I.S. Nandhakumar, In Situ STM Study of CdTe ECALE Bilayers on Gold. The Journal of Physical Chemistry B, 1998. 102(25): p. 4897-4905.
  • Hattori, T., et al., Indices of refraction of ZnS, ZnSe, ZnTe, CdS, and CdTe in the far infrared. Optics Communications, 1973. 7(3): p. 229-232.
  • Hangarter, C.M., et al., Three dimensionally structured interdigitated back contact thin film heterojunction solar cells. Journal of Applied Physics, 2011. 109(7).
  • Han, D.-H., S.-J. Choi, and S.-M. Park, Electrochemical Preparation of Zinc Telluride Films on Gold Electrodes. Journal of The Electrochemical Society, 2003. 150(5): p. C342-C346.
  • Hammond, N., et al., Copper and native defects in zinc telluride. Journal of Physics and Chemistry of Solids, 1973. 34(6): p. 1069-1073.
  • Gwak, I.G., et al., Antifreeze Protein in Antarctic Marine Diatom, Chaetoceros neogracile. Marine Biotechnology, 2010. 12(6): p. 630-639.
  • Guziewicz, E., et al., Atomic layer deposition of thin films of ZnSestructural and optical characterization. Thin Solid Films, 2004. 446(2): p. 172-177.
  • Gloeckler, M., J.R. Sites, and W.K. Metzger, Grain-boundary recombination in Cu(In,Ga)Se2 solar cells. Journal of Applied Physics, 2005. 98(11): p. -.
  • Gloeckler, M., J.R. Sites, and W.K. Metzger, Grain-boundary recombination in Cu(In,Ga)Se-2 solar cells. Journal of Applied Physics, 2005. 98(11).
  • Gloeckler, M. and J. Sites, Band-gap grading in Cu (In, Ga) Se< sub> 2</sub> solar cells. Journal of Physics and Chemistry of Solids, 2005. 66(11): p. 1891- 1894.
  • Gago, A., et al., Carbon supported ruthenium chalcogenide as cathode catalyst in a microfluidic formic acid fuel cell. Journal of Power Sources, 2011. 196(3): p. 1324-1328.
  • Fu, D., et al., Dye Sensitized BackContact Solar Cells. Advanced Materials, 2010. 22(38): p. 4270-4274.
  • Feng, L., et al., The structural, optical, and electrical properties of vacuum evaporated Cu-doped ZnTe polycrystalline thin films. Journal of Electronic Materials, 1996. 25(9): p. 1422-1427.
  • Fan, Z.Y., et al., Three-dimensional nanopillar-array photovoltaics on low-cost and flexible substrates. Nature Materials, 2009. 8(8): p. 648-653.
  • Fan, Z.Y., et al., Challenges and Prospects of Nanopillar-Based Solar Cells. Nano Research, 2009. 2(11): p. 829-843.
  • Fahrenbruch, A., Modeling Results for CdS/CdTe Solar Cells, CSU Report. 2000.
  • Eggleton, B.J., Chalcogenide photonics: fabrication, devices and applications Introduction. Optics express, 2010. 18(25): p. 26632-26634.
  • Duan, X., et al., High-performance thin-film transistors using semiconductornanowires and nanoribbons. Nature, 2003. 425(6955): p. 274-278.
  • Dong, Y., Q. Peng, and Y. Li, Semiconductor zinc chalcogenides nanofibers from 1-D molecular precursors. Inorganic Chemistry Communications, 2004. 7(3): p. 370-373.
  • Dmitruk, N.L., et al., Texturized interface as a basis of surface-barrier heterostructure for solar cells application. Solar Energy Materials and Solar Cells, 2000. 60(4): p. 379-390.
  • Dharmadasa, I.M. and J. Haigh, Strengths and advantages of electrodeposition as a semiconductor growth technique for applications in macroelectronic devices. Journal of The Electrochemical Society, 2006. 153(1): p. G47-G52.
  • Cunningham, D., M. Rubcich, and D. Skinner, Cadmium telluride PV module manufacturing at BP Solar. Progress in Photovoltaics, 2002. 10(2): p. 159-168.
  • Cook, B.A., et al., Nature of the cubic to rhombohedral structural transformation in (AgSbTe2)15(GeTe)85 thermoelectric material. Journal of Applied Physics, 2007. 101(5): p. -.
  • Comini, E., et al., Tin oxide nanobelts electrical and sensing properties. Sensors and Actuators B: Chemical, 2005. 111-112(0): p. 2-6.
  • Chopra, K.L., P.D. Paulson, and V. Dutta, Thin-film solar cells: an overview. Progress in Photovoltaics: Research and Applications, 2004. 12(2-3): p. 69-92.
  • Choi, S.-W., et al., Bimetallic Pd/Pt nanoparticle-functionalized SnO2 nanowires for fast response and recovery to NO2. Sensors and Actuators B: Chemical, 2013. 181(0): p. 446-453.
  • Chassaing, E., et al., Electrocrystallization Mechanism of Cu-In-Se Compounds for Solar Cell Applications. Journal of The Electrochemical Society, 2010. 157(7): p. D387-D395.
  • Chang, J.-Y., et al., Efficient “green” quantum dot-sensitized solar cells based on Cu 2 S-CuInS 2-ZnSe architecture. Chemical Communications, 2012. 48(40): p. 4848-4850.
  • Chanda, S., et al. Control of V oc in CdSe solar cells. in Photovoltaic Specialists Conference (PVSC), 2009 34th IEEE. 2009. IEEE.
  • Campbell, K.A. and J.T. Moore, Silver-selenide/chalcogenide glass stack for resistance variable memory. 2006, Google Patents.
  • Britt, J. and C. Ferekides, Thin film CdS/CdTe solar cell with 15.8% efficiency. Applied Physics Letters, 1993. 62(22): p. 2851-2852.
  • Bozzini, B., et al., Electrodeposition of ZnTe for photovoltaic cells. Thin Solid Films, 2000. 361: p. 388-395.
  • Bowen, W.E., W.M. Wang, and J.D. Phillips, Complementary Thin-Film Electronics Based on n-Channel ZnO and p-Channel ZnTe. Ieee Electron Device Letters, 2009. 30(12): p. 1314-1316.
  • Bouroushian, M., et al., Electrodeposition of polycrystalline ZnTe from simple and citrate-complexed acidic aqueous solutions. Electrochimica Acta, 2009. 54(9): p. 2522-2528.
  • Bouroushian, M., T. Kosanovic, and N. Spyrellis, Aspects of ZnSe electrosynthesis from selenite and selenosulfite aqueous solutions. Journal of Solid State Electrochemistry, 2005. 9(1): p. 55-60.
  • Bouroushian, M., Electrochemistry of Metal Chalcogenides. 2010: Springer. 67.
  • Blanconnier, P., et al., Growth and characterization of undoped ZnSe epitaxial layers obtained by organometallic chemical vapour deposition. Thin Solid Films, 1978. 55(3): p. 375-386.
  • Bhattacharyya, D., S. Chaudhuri, and A.K. Pal, Electrical conduction at low temperatures in polycrystalline CdTe and ZnTe films. Materials Chemistry and Physics, 1995. 40(1): p. 44-49.
  • Bhattacharya, R.N., CIGS-based solar cells prepared from electrodeposited stacked Cu/In/Ga layers. Solar Energy Materials and Solar Cells, 2013. 113(0): p. 96-99.
  • Barsan, N., D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to? Sensors and Actuators B: Chemical, 2007. 121(1): p. 18-35.
  • Barnette, L. and C. Liang, Cathode material for solid state batteries. 1976, Google Patents.
  • Babu, P.K., et al., Selenium becomes metallic in Ru-Se fuel cell catalysts: an EC- NMR and XPS investigation. Journal of the American Chemical Society, 2007. 129(49): p. 15140-15141.
  • Aven, M., D. Marple, and B. Segall, Some electrical and optical properties of ZnSe. Journal of Applied Physics, 1961. 32(10): p. 2261-2265.
  • Aven, M. and B. Segall, Carrier Mobility and Shallow Impurity States in ZnSe and ZnTe. Physical Review, 1963. 130(1): p. 81-91.
  • Atwater, H.A. and A. Polman, Plasmonics for improved photovoltaic devices (vol 9, pg 205, 2010). Nature Materials, 2010. 9(10): p. 865-865.
  • Aranda, J., et al., Optical properties of vacuum-evaporated CdTe thin films. Thin Solid Films, 1984. 120(1): p. 23-30.
  • Ahn, S., et al., Determination of band gap energy (E-g) of Cu2ZnSnSe4 thin films: On the discrepancies of reported band gap values. Applied Physics Letters, 2010. 97(2).
  • Afifi, M.A., et al., Electrical and thermal properties of chalcogenide glass system Se75Ge25x Sb x. Applied Physics A, 1992. 55(2): p. 167-169.