박사

Development of Chemical and ssDNA Aptamer Based Potent Anti-tuberculosis Agents targeting Mycobacterium tuberculosis Acetohydroxyacid Synthase : 강력한 항결핵 타겟으로서 Mycobacterium tuberculosis Acetohydroxyacid Synthase 의 활성자리 돌연변이 연구와 화합물 저해제 및 저해 앱타머 발굴

논문상세정보
' Development of Chemical and ssDNA Aptamer Based Potent Anti-tuberculosis Agents targeting Mycobacterium tuberculosis Acetohydroxyacid Synthase : 강력한 항결핵 타겟으로서 Mycobacterium tuberculosis Acetohydroxyacid Synthase 의 활성자리 돌연변이 연구와 화합물 저해제 및 저해 앱타머 발굴' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • ahas
  • aptamer
  • chemical
  • dna selex
  • inhibitor
  • tuberculosis
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
500 0

0.0%

' Development of Chemical and ssDNA Aptamer Based Potent Anti-tuberculosis Agents targeting Mycobacterium tuberculosis Acetohydroxyacid Synthase : 강력한 항결핵 타겟으로서 Mycobacterium tuberculosis Acetohydroxyacid Synthase 의 활성자리 돌연변이 연구와 화합물 저해제 및 저해 앱타머 발굴' 의 참고문헌

  • vanDijk, M., van Dijk, A.D.J., Hsu, V., Boelens, R., Bonvin, A.M.J. (2006) Information-driven protein-DNA docking using HADDOCK: it is a matter of flexibility, Nucleic acids research, 34, 3317-3325.
  • http://www.tradingeconomics.com/south-korea/incidence-of-tuberculosis-per-100-000-people- wb-data.html
  • http://english.yonhapnews.co.kr/business/2013/09/13/68/0504000000AEN20130913003600320 F.html
  • Zuker, M. (2003) Mfold web server for nucleic acid folding and hybridization prediction, Nucleic acids research, 31, 3406-3415.
  • Zohar, Y., Einav, U., Chipman, DM., Barak, Z. (2003) Acetohydroxyacid synthase Mycobacterium avium and its inhibition by sulfonylureas and imidazolinones, Biochem Biophys Acta, 1649, 97-105.
  • Yu, Q., Han, H.P., Vila-Aiub, M.M., Powles, S.B. (2010) AHAS herbicide resistance endowing mutations: effect on AHAS functionality and plant growth, Journal of Experimental Botany, 61, 3925-3934.
  • Yang, J.H., Kim, S.S. (1993) Purification and characterization of the valine sensitive acetolactate synthase from Serratiamarcescens ATCC 25419, Biochim Biophys Acta, 1157, 178-184.
  • Wynn, R.M., Ho, R., Chuang, J.L., Chuang, D.T. (2001) Roles of active site and novel K+ ion- binding site residues in human mitochondrial branched-chain alpha-ketoacid decarboxylase/dehydrogenase, J BiolChem, 276, 4168-74.
  • Wikner, C., Meshalkina, L., Nilsson, U., Nikkola, M., Lindqvist, Y., Sundstrom, M., Schneider, G. (1994) Analysis of an invariant cofactor-protein interaction in thiamin diphosphate-dependent enzymes by site-directed mutagenesis. Glutamic acid 418 in transketolase is essential for catalysis, J BiolChem, 269, 32144-50.
  • Westerfeld, W.W. (1947) A colorimetric determination of blood acetoin, J BiolChem 161, 495- 02.
  • Wek, R.C., Hauser, C.A., Hatfield, G.W. (1985) The nucleotide sequence of the ilvBN operon of Escherichia coli: sequence homologies of the acetohydroxy acid synthase isozymes, Nucleic Acids Res, 13, 3995-4010.
  • Wang, J., Lee, P.K.M., Dong, Y.H., Pang, S.S., Ronald G., Duggleby, Z. M., Li and Luke, W. G. (2009) Crystal structures of two novel sulfonylurea herbicides in complex with Arabidopsis thaliana acetohydroxyacid synthase, FEBS Journal 276, 1282-1290.
  • Wang, D., Zhu, X., Cui, C., Dong, M,. Jiang, H., Li, Z., Liu, Z., Zhu, W., Wang, J.G. (2013) Discovery of novel acetohydroxyacid synthase inhibitors as active agents against Mycobacterium tuberculosis by virtual screening and bioassay, J Chem Inf Model. 53, 343-53.
  • Vyazmensky, M., Steinmetz A, Meyer D, Golbik, R, Barak, Z, Tittmann,K, Chipman DM. (2011) Significant catalytic roles for Glu47 and Gln 110 in all four of the C-C bond-making and -breaking steps of the reactions of acetohydroxyacid synthase II, Biochemistry, 50, 3250-60.
  • Vandenengel, J.E. and Morse, D.P. (2009) Mutational analysis of a signaling aptamer suggests a mechanism for ligand-triggered structure-switching, Biochemical and biophysical research communications, 378, 51-56.
  • Van Gunsteren, W.F., Billeter, S.R., Eising, A.A., Hunenberger, P.H., Kruger, P., Mark, A.E., Scott, W.R.P., Tironi, I.G. (1996) Biomolecular Simulation: The GROMOS96 Manual and User Guide. Verlag der Fachvereine Hochschulverlag AG an der ETH Zurich, Groningen.
  • Umbarger, H.E. and Brown, B. (1958) Isoleucine and valine metabolism in Escherichia coli. VIII. The formation of acetolactate, J Biol Chem, 233, 1156-1160.
  • Tuberculosis Fact sheet N 104. World Health Organization. November 2010. Retrieved 26 July 2011
  • Trott, O. and Olson, A.J. (2010) AutoDockVina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading, Journal of Computational Chemistry, 31, 455-461.
  • Tittmann, K., Vyazmensky, M., Hubner, G., Barak, Z., Chipman, DM. (2005). The carboligation reaction of acetohydroxyacid synthase II: steadystate intermediate distributions in wild type and mutants by NMR, ProcNatlAcadSci USA, 102, 553-8.
  • Tittmann, K., Vyazmensky, M., Hubner, G., Barak, Z., Chipman, D.M. (2005) The carboligation reaction of acetohydroxyacid synthase II: steady-state intermediate distributions in wild type and mutants by NMR, ProcNatlAcadSci USA, 102, 553-558.
  • Tittmann, K., Schroder, K., Golbik, R., McCourt, J., Kaplun, A., Duggleby, RG., Barak, Z., Chipman, D.M., Hubner, G. (2004) Electron transfer in acetohydroxy acid synthase as a side reaction of catalysis. Implications for the reactivity and partitioning of the carbanion enamine form of (R-hydroxyethyl) thiamin diphosphate in a ‘nonredox’ flavoenzyme, Biochemistry, 43, 8652-8661.
  • Tittmann, K., Golbik, R., Uhlemann, K. et al. (2003) NMR analysis of covalent intermediates in thiamin diphosphate enzymes, Biochemistry, 42, 7885-91.
  • Tan, S., Evans, R., Singh, B. (2006) Herbicidal inhibitors of amino acid biosynthesis and herbicide tolerant crops, Amino Acids, 30, 195e204.
  • Subashchandrabose, S., LeVeque, R.M., Wagne,r T.K., Kirkwood, R.N., Kiupel, M., Mulks, M.H. (2009) Branched-chain amino acids are required for the survival and virulence of Actinobacillus pleuropneumoniae in swine, Infect Immun, 77, 4925-4933.
  • Stormer, F.C. (1968) The pH 6 acetolactate-forming enzyme from Aerobacteraerogenes. II. Evidence that it is not a flavoprotein, J. Biol. Chem. 243, 3740-3741.
  • Stormer, F.C. (1968) The pH 6 acetolactate-forming enzyme from Aerobacteraerogenes. I. kinetic studies, J Biol Chem, 243, 3735-3739.
  • Stoltenburg, R., Reinemann, C., and Strehlitz, B. (2007) SELEX--a (r)evolutionary method to generate high-affinity nucleic acid ligands, Biomolecular engineering, 24, 381-403.
  • Steinmetz, A., Vyazmensky, M., Meyer, D., Barak, Z., Golbik, R., Chipman, D.M., Tittmann, K. (2010) Valine 375 and phenylalanine 109 confer affinity and specificity for pyruvate as donor substrate in acetohydroxy acid synthase isozyme II from Escherichia coli, Biochemistry, 49, 5188-5199.
  • Squires, C.H., Felice, M.De., Devereux, J., and Calvo, J.M. (1983) Molecular structure of ilvIH and its evolutionary relationship to ilvG in Escherichia coli K12, Nucleic Acids Res, 11, 5299- 5313.
  • Somoskovi, A.L.M.P, and Salfinger, M. (2007) The molecular basis of resistance to isoniazid, rifampin, and pyrazinamide in Mycobacterium tuberculosis, Respir Res, 2, 164-8.
  • Snoep, J.L., Teixeira de Mattos, M.J., Starrenburg, M.J.C., Hugenholtz, J. (1992) Isolation, characterization, and physiological role of the pyruvate dehydrogenase complex and alpha- acetolactate synthase of Lactococcus lactis subsp.lactisbv. diacetylactis, J Bacteriol, 174, 4838- 4841.
  • Smuc, T., Ahn, I. Y., and Ulrich, H. (2013) Nucleic acid aptamers as high affinity ligands in biotechnology and biosensorics, J Pharmaceut Biomed, 81-82, 210-217.
  • Small, P.M. and Fujiwara, P.I. (2001) Management of tuberculosis in the United States, N Engl J Med, 345, 189-200.
  • Singh, V., Chandra, D., Srivastava, B. S., Srivastava, R. (2011) Biochemical and transcription analysis of acetohydroxyacid synthase isoforms in Mycobacterium tuberculosis identifies these enzymes as potential targets for drug development, Microbiology, 157, 2937.
  • Silva, P and Ainsa, J. A. (2007) Drugs and Drug Interactions, In: J.C. Palomino, S.C. Leao and V. Ritacco, Eds., Tuberculosis. From Basic Science to Patient Care. http://www.TuberculosisTextbook.com
  • Shum, K.T., Zhou, J., Rossi, J.J. (2013) Nucleic Acid Aptamers as Potential Therapeutic and Diagnostic Agents for Lymphoma, Journal of cancer therapy, 4, 872-890.
  • Shum, K. T., Lui, E. L. H., Wong, S. C. K., Yeung, P., Sam, L., Wang, Y., Watt, R. M., and Tanner, J. A. (2011) Aptamer-Mediated Inhibition of Mycobacterium tuberculosis Polyphosphate Kinase 2, Biochemistry-Us50, 3261-3271.
  • Shimizu, T., Nakayama, I., Nakao, T., Nezu, Y., Abe, H. (1994) Inhibition of plant acetolactate synthase by herbicides, pyrimidinylsalicylic acids, J Pestic Sci 19, 59-67.
  • Shen, M.Y. and Sali, A. (2006) Statistical potential for assessment and prediction of protein structures, Protein Sci 15, 2507-2524.
  • Shaner, D.L., Anderson, P.C., Stidham, M.A. (1984) Imidazolinones: potent inhibitors of acetohydroxyacid synthase, Plant Physiol, 76, 545-546.
  • Shaanan, B. and Chipman, D.M. (2009) Reaction mechanisms of thiamin diphosphate enzymes: new insights into the role of a conserved glutamate residue, FEBS J, 276, 2447-53.
  • Shaanan, B. and Chipman, D.M. (2009) Reaction mechanisms of thiamin diphosphate enzymes: new insights into the role of a conserved glutamate residue, FEBS J, 276, 2447-2453.
  • Seeliger, D., Groot, B.L.De. (2010) Ligand docking and binding site analysis with PyMOL and Autodock/Vina, Journal of Comput Aided Mol Des, 24, 417-422.
  • Schuttelkopf, A.W., Van, Aalten, D.M.F. (2004) PRODRG - a tool for high-throughput crystallography of protein-ligand complexes, Acta Crystallogr D BiolCrystallogr, 60, 1355-1363.
  • Schloss, J.V., Van Dyk D.E., Vasta J.F., Kutny R.M. (1985) Purification and properties of Salmonella typhimurium acetolactate synthase isozyme II from Escherichia coli HB101=pDU9, Biochemistry, 24, 4952-4959.
  • Schloss, J.V. and Van Dyk, D.E. (1988) Acetolactate synthase isozyme II from Salmonella typhimurium, Methods Enzymol, 166, 445-454.
  • Sarkar, G. and Sommer S.S. (1990) The "megaprimer" method of site-directed mutagenesis. Biotechniques 8, 404-407.
  • Santos, L.C., Bousquet Hde, M., Pereira, A.M., Junqueira-Kipnis, A.P., Kipnis, A. (2010) A High Prevalence of Resistance in New Tuberculosis Cases of Midwestern Brazil, Infection Genetics Evolution, 10, 1052-1057.
  • Sanger F, Nicklen S, Coulson AR. (1977) DNA sequencing with chain-terminatinginhibitors.Proc.Natl.Acad.Sci.74,5463-5467.
  • Sambrook, J., Fritsch, E. F., Maniatis, T. (1989). Molecular cloning: a laboratory manual. New York: Cold Spring Harbor Laboratory Press.
  • Sali, A., Pottertone, L., Yuan, F., Van, V.H., Karplus, M. (1995) Proteins Evaluation of comparative protein modeling by MODELLER, Proteins, 23, 318-326.
  • Ruckman, J., Green, L. S., Beeson, J., Waugh, S., Gillette, W. L., Henninger, D. D., Claesson- Welsh, L., Janjic, N. (1998) 2 '-fluoropyrimidine RNA-based aptamers to the 165-amino acid form of vascular endothelial growth factor (VEGF(165)) - Inhibition of receptor binding and VEGF-induced vascular permeability through interactions requiring the exon 7-encoded domain, J Biol Chem, 273, 20556-20567.
  • Rotherham, L.S., Maserumule, C., Dheda, K., Theron, J., Khati, M. (2012) Selection and Application of ssDNA Aptamers to Detect Active TB from Sputum Samples, PloS one, 7, e46862. doi:10.1371/journal.pone.0046862.
  • Renna, M. C., Najimudin, N., Winik, L. R. and Zahler, S. A. (1993) Regulation of the Bacillus subtilisals S, alsD, and alsR genes involved in post-exponential-phaseproduction of acetoin, J Bacteriol, 175, 3863-3875.
  • Reed, S.G., Dalemans, W., Dalemans, W. (2003) Prospects for a better vaccine against tuberculosis, Tuberculosis, 83, 213.
  • Reed, G.W., Choi, H., Lee, S.Y., Lee, M., Kim, Y., Park, H., Lee, J., Zhan, X., Kang H., Hwang, S. (2013) Impact of Diabetes and Smoking on Mortality in Tuberculosis, PLoS One, 14, e58044. doi: 10.1371/journal.pone.0058044
  • Ray, P., Viles, K. D., Soule, E. E., Woodruff, R. S. (2013) Application of aptamers for targeted therapeutics, Archivum Immunologiae et Therapiae Experimentalis, 61, 255-271.
  • Raviglione, M.C., Narain, J.P., Kochi, A. (1992) HIV-associated tuberculosis in developing countries: clinical features, diagnosis, and treatment, Bull WHO, 70, 515-526.
  • Pue, N. and Guddat, L.W. (2014) Acetohydroxyacid Synthase: A Target for Antimicrobial Drug Discovery, Current Pharmaceutical Design, 20, 740-753.
  • Pronk, S., Pall, S., Schulz, R., Larsson, P., Bjelkmar, P., Apostolov, R., Shirts, M.R., Smith, J.C., Kasson, P.M., van, der,Spoel. D., Hess, B., Lindahl, E. (2013) GROMACS 4.5: a high- throughput and highly parallel open source molecular simulation toolkit, Bioinformatics, 29, 845-854.
  • Porat, I., Vinogradov, M., Vyazmensky, M., Chung-Dar, L., Chipman, DM.,Abdelal, AT., Barak. Z. (2004) Cloning and characterization of acetohydroxyacid synthase from Bacillus stearothermophilus. J Bacteriol 186, 570-574.
  • Phalip, V., Schmitt, P., Divies, C. (1995) Purification and characterization of the catabolic α- acetolactate synthase from Leuconostocmesenteroides subsp. Cremoris, Curr Microbiol, 31, 316-321.
  • Patil, V., Kale, M., Raichurkar, A., Bhaskar, B., Prahlad, D., Balganesh, M., Nandan, S., Hameed, P.S. (2014) Design and synthesis of triazolopyrimidineacylsulfonamidesas novel anti- mycobacterial leads acting through inhibition of acetohydroxyacid synthase, Bioorganic & Medicinal Chemistry Letters, 24, 2222-2225.
  • Pang, S.S., Guddat, L.W., Duggleby, R.G. (2003) Molecular basis of sulfonylurea herbicide inhibition of acetohydroxyacid synthase, J BiolChem, 278, 7639-7644.
  • Pang, S.S., Duggleby, R.G., Schowen, R.L., Guddat. L.W. (2004) The crystal structures of Klebsiellapneumoniaeacetolactate synthase with enzyme-bound cofactor and with an unusual intermediate, J Biol Chem, 279, 2242-2253.
  • Pang, S.S., Duggleby, R.G., Schowen, R.L., Guddat, L.W. (2004) The crystal structures of Klebsiella pneumoniae acetolactate synthase withenzyme-bound cofactor and with an unusual intermediate, J Biol Chem, 279, 2242-53.
  • Pang, S.S., Duggleby, R.G., Guddat, L.W. (2002) Crystal structure of yeast acetohydroxyacid synthase: a target for herbicidal inhibitors, J Mol. Biol, 317, 249-62.
  • Pan, Q., Wang, Q.L., Sun, X.M., Xia, X.R., Wu, S.M., Luo, F.L., Zhang, X.L. (2014) Aptamer Against Mannose-capped Lipoarabinomannan Inhibits Virulent Mycobacterium tuberculosis Infection in Mice and Rhesus Monkeys, Mol Ther, 22, 940-951.
  • Pan, L., Jiang, Y., Liu, Z., Liu, X.H., Liu, Z., Wang, G., Wang, Z.M.LI.D. (2012) Synthesis and evaluation of novel monosubstituted sulfonylurea derivatives as antituberculosis agents, Eur J Med Chem, 50, 18-26.
  • Nobel Foundation. The Nobel Prize in Physiology or Medicine 1905. [Cited 2010 Sep 10]; Available from: URL:http://de.wikipedia.org/.../Simple:Nobel_Prize_in_Physiology_or_Medicine.
  • Niu, X., Liu, X., Zhou, Y., Niu, C., Xi, Z., Su, X.D. (2011) Preliminary X-ray crystallographic studies of the catalytic subunit of Escherichia coli AHAS II with its cofactors, Acta Crystallogr Sect F Struct Biol Cryst Commun, 67, 659-661.
  • Nemeria, N., Tittmann, K., Joseph, E. et al. (2005) Glutamate 636 of the Escherichia coli pyruvate dehydrogenase-E1 participates in active center communication and behaves as an engineered acetolactatesynthase with unusual stereoselectivity, J Biol. Chem, 280, 21473-82.
  • Muller, Y.A., Lindqvist, Y., Furey, W., Schulz, G.E., Jordan, F., Schneider, G. (1993) A thiamin diphosphate binding fold revealed by comparison of the crystal structures of transketolase, pyruvate oxidase and pyruvate decarboxylase, Structure, 1, 95-103.
  • Morris, G. M., Goodsell, D. S., Halliday, R.S., Huey, R., Hart, W. E., Belew, R. K. and Olson, A. J. (1998) Automated Docking Using a Lamarckian Genetic Algorithm and and Empirical Binding Free Energy Function, J Comput Chem, 19, 1639-1662.
  • Mitra, A &Sarma, S.P (2008) Escherichia coli ilvN Interacts with the FAD binding domain of ilvB and activates the AHAS I enzyme. Biochemistry 47, 1518-1531.
  • McCourt, J.A., Pang, S.S., King-Scott, J., Duggleby, R.G., Guddat, L.W. (2006) Herbicide binding sites revealed in the structure of plant acetohydroxyacid synthase, ProcNatlAcadSci USA, 103, 569-573.
  • McCourt, J.A., Pang, S.S., Duggleby, R.G., and Guddat, L.W. (2005) Elucidating the specificity of binding of sulfonylurea herbicides to acetohydroxyacid synthase, Biochemistry, 44, 2330- 2338.
  • McCourt, J.A. and Duggleby, R.G. (2006) Acetohydroxyacid synthase and its role in the biosynthetic pathway for branched-chain amino acids, Amino acid, 31: 173-210.
  • Mayer, D., Schlensog, V., Bock, A. (1995) Identification of the transcriptional activator controlling the butanediol fermentation pathway in Klebsiella terrigena, J. Bacteriol, 177, 5261- 5269.
  • Manangan, L.P. and Jarvis, W.R. (2002) Preventing multidrug-resistant tuberculosis and errors in tuberculosis treatment around the globe, Chest, 117, 620-623.
  • Maciel, E.L., Brioschi, A.P., Peres, R.L., Guidoni, L.M., Ribeiro, F.K., Hadad, D.J.,Vinhas, S.A., Zandonade, E., Palaci, M., Dietze, R., Johnson, J.L. (2013) Smoking and 2-month culture conversion during anti-tuberculosis treatment, Int J Tuberc Lung Dis, 14, 225-228.
  • MacKerell, A. D., Banavali, N., and Foloppe, N. (2001) Development and current status of the CHARMM force field for nucleic acids, Biopolymers, 56, 257-265.
  • Lim, W.M., Baig, I.J., La, I.J., Choi, J.D., Kim, D.E., Kim, S.K., Hyun, J.W., Kim,G., Kang, C.H., Kim, Y.J., Yoon, M.Y., (2011) Cloning, characterization and evaluation of potent inhibitors of Shigella sonnei acetohydroxyacid synthase catalytic subunit, Biochim Biophys Acta 1814, 1825-1831.
  • Lim, W.M., Baig, I.J., La, I.J., Choi, J.D., Kim, D.E., Kim, S.K., Hyun, J.W., Kim, G., Kang, C.H., Kim, Y.J. et al. (2011) Cloning, characterization and evaluation of potent inhibitors of Shigella sonnei acetohydroxyacid synthase catalytic subunit, Biochim Biophys Acta, 1814, 1825-1831.
  • Li, Y.X., Luo, Y.P., Xi ,Z., Niu C., He, Y.Z., Yang, G.F. (2006) Design and syntheses of novel phthalazin-1(2H)-one derivatives as acetohydroxyacid synthase inhibitors. J Agric Food Chem, 54, 9135-9.
  • Li, H., Furey, W., Jordan, F. (1999) Role of Glutamate 91 in Information Transfer during Substrate Activation of Yeast Pyruvate Decarboxylase, Biochemistry, 38, 9992-03.
  • Leyval, D., Uy, D., Delaunay, S., Goergen, JL., Engasser, JM. (2003) Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum, J Biotechnol, 104, 241-252.
  • Lee, Y.T., Cui, C.J., Chow, E.W., Pue, N., Lonhienne, T., Wang, J.G., Fraser, J.A., Guddat, L.W. (2013) Sulfonylureas have antifungal activity and are potent inhibitors of Candida albicans acetohydroxyacid synthase, J Med Chem, 56, 210-9.
  • Le, D.T., Yoon, M.Y., Kim, Y.T., Choi, J.D. (2004) Homology modeling of the structure of tobacco acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis, Biochem Biophys Res Commun, 317, 930-8.
  • Lawther, R.P., Wek, R.C., Lopes, J.M., Pereira, R., Taillon, B.E., Hatfield, G.W. (1987) The complete nucleotide sequence of the ilvGMEDA operon of Escherichia coli K-12, Nucleic Acids Res, 15, 2137-2155.
  • Larkin, M.A., Blackshields, G., Brown, N.P., Chenna, R., McGettigan, P.A.,McWilliam, H. et al. (2007) Clustal W and Clustal X version 2.0.Bioinformatics 23: 2947-2948.
  • Laemmli, U.K., 1970. Cleavage of structural proteins during theassembly of the head of bacteriophage T4. Nature 227, 680-685.
  • LaRossa, R.A. and Schloss, J.V. (1984) The sulfonylurea herbicide sulfometuron methyl is an extremely potent and selective inhibitor of acetolactate synthase in Salmonella typhimurium, J BiolChem, 259, 8753-8757.
  • Kopecky, J., Janata, J., Pospisil, S., Felsberg, J., Spizek, J. (1999) Mutations in 2 distinct regions of acetolactate synthase regulatory subunit from Streptomyces cinnamonensis result in the lack of sensitivity to endproduct inhibition, Biochem Biophys Res Commun, 266, 162-166
  • Kolappan, C. and Gopi, P.G. (2012) Tobacco smoking and pulmonary tuberculosis, Thorax, 14, 964-966.
  • Kissel, J.D., Held, D.M., Hardy, R.W., Burke, D.H. (2007) Active site binding and sequence requirements for inhibition of HIV-1 reverse transcriptase by the RT1 family of single-stranded DNA aptamers, Nucleic acids research, 35, 5039-5050.
  • Kim D.H., Kim H.J., Park S.K., Kong S.J., Kim Y.S., Kim T.H., Kim, E.K., Lee, K.M., Lee, S.S., Park, J.S., Koh, W.J., Lee, C.H., Kim, J.Y., Shim, T.S. (2008) Treatment outcomes and long-term survival in patients with extensively drug-resistant tuberculosis, American Journal of Respiratory and Critical Care, 178, 1075-82.
  • Killenberg-Jabs, M., Konig, S., Eberhardt, I., Hohmann, S., Hubner, G. (1997) Role of Glu51 for cofactor binding and catalytic activity in pyruvate decarboxylase from yeast studied by site- directed mutagenesis, Biochemistry, 36,1900-5.
  • Kibiki, G. S., Mulder, B., Dolmans, W.M., de Beer, J.L., Boeree, M., Sam, N., van Soolingen, D., Sola, C., van der Zanden, A.G. (2007) M. tuberculosis Genotypic Diversity and Drug Susceptibility Pattern in HIV-Infected and Non-HIV-Infected Patients in Northern Tanzania, BMC Microbiol, 7, 51.
  • Kalme, S., Pham, C.N., Gedi, V., Le, D.T., Choi, J.D., Kim, S.K & Yoon, M.Y (2008) Inhibitors of Bacillus anthracis acetohydroxyacid synthase, Enzyme Microb Technol, 43, 270-275.
  • Ji F.Q., Niu C.W., Chen C.N. et al. (2008) Computational design and discovery of conformationally flexible inhibitors of acetohydroxyacid synthase to overcome drug resistance associated with the W586L mutation, Chem Med Chem, 3, 1203-6.
  • Jessie, M.T.T. and Schloss, J.V. (1993) The oxygenase reaction of acetolactate synthase, Biochemistry, 32, 10398-10403.
  • Jayasena, S. D. (1999) Aptamers: An emerging class of molecules that rival antibodies in diagnostics, Clin Chem, 45, 1628-1650.
  • Irvine, D., Tuerk, C., and Gold, L. (1991) SELEXION. Systematic evolution of ligands by exponential enrichment with integrated optimization by non-linear analysis, Journal of molecular biology, 222, 739-761.
  • Ibdah, M., BarIlan, A., Livnah, O., Schloss, JV., Barak, Z., Chipman, DM.(1996) Homology modeling of the structure of bacterial acetohydroxy acid synthase and examination of the active site by site-directed mutagenesis, Biochemistry-US, 35, 16282-91.
  • Holtzclaw, W.D. and Chapman, L. F. (1975) Degradative acetolactate synthase of Bacillus subtilis: purification and properties, J Bacteriol, 121, 917-922.
  • History of TB and Significance of World TB day [Editorial]. JIMA 2003; 101(3):138.
  • Hill, C.M., Pang S.S., Duggleby R.G. (1997) Purification of Escherichia coli acetohydroxyacid synthase isoenzyme II and reconstitution of active enzyme from its individual pure subunits, Biochem J, 327, 891-898
  • He, Y., Niu, C., Wen, X., and Xi, Z. (2013) Molecular Drug Resistance Prediction for Acetohydroxyacid Synthase Mutants Against Chlorsulfuron Using MB-QSAR, Chinese Journal of Chemistry, 31, 1171-1180.
  • Grimminger, H. and Umbarger, H.E. (1979) Acetohydroxy acid synthase I of Escherichia coli: purification and properties, J Bacteriol, 137, 846-853
  • Greer, J., Erickson, J.W., Baldwin, J.J, Varney, M.D. (1994). Application of the three- dimensional structures of protein target molecules in structure-based drug design, J Med Chem, 37, 1035-1054.
  • Grandoni, J.A., Marta, P.T., Schloss, J.V. (1998) Inhibitors of branched-chain amino acid biosynthesis as potential antituberculosis agents, J Antimicrob Chemother, 42, 475-482. 87. Guleria, I., Teitelbaum, R., McAdam, R.A., Kalpana, G., Jacobs, W.R.Jr., Bloom, B.R. (1996) Auxotropic vaccines for tuberculosis, Nat Med, 2, 334-337.
  • Gollop, N., Damri, B., Barak, Z., Chipman, D.M. (1989) Kinetics and mechanism of acetohydroxyacid synthase isozyme III from Escherichia coli, Biochemistry, 28, 6310-6317.
  • Gollop, N., Damri B., Chipman, D.M., Barak, Z. (1990) Physiological implications of the substrate specificities of acetohydroxy acid synthases from varied organisms, J Bacteriol, 172, 3444-3449.
  • Golbik, R., Neef, H., Hubner, G., Konig, S., Seliger, B., Meshalkina, L., Kochetov, G.A. and Schellenberger, A. (1991) Function of the aminopyrimidine part in thiamine pyrophosphate enzymes, Bioorg Chem, 19, 10-17.
  • Global tuberculosis report 2014; WHO/HTM/TB/2014.08; ISBN 978924 1564809.
  • Gerwick, B.C., Subermanian, V.I., Loney-Gallant, V.I., Chander, D.P. (1990) Mechanism of action of the 1,2,4- triazolo(1,5-a)pyrimidines, Pestic Sci, 29, 357-364.
  • Gedi, V., Moon, J.Y., Lim, W.M., Lee, S.C., Koo, B.S., Govindwar, S., Yoon, M.Y. (2011) Identification and characterizationof inhibitors of Haemophilus influenza acetohydroxyacid synthase, Enzyme Microb Technol, 49, 1-5.
  • Gedi, V., Jayaraman, K., Kalme, S., Park, H.Y., Park, H.C., La, I.J., Hahn, H.G. Yoon, M.Y. (2010) Evaluation of substituted triazol-1-yl-pyrimidines as inhibitors of Bacillus anthracis acetohydroxyacid synthase, Biochim Biophys Acta, 1804, 1369-1375.
  • Gedi, V. and Yoon, M.Y. (2012) Bacterial acetohydroxyacid synthase and its inhibitors - a summary of their structure, biological activity and current status, Febs Journal, 279, 946-963. doi: DOI 10.1111/j.1742-4658.2012.08505.x
  • Franke, M., Appleton, S., Bayona, J., Arteaga, F., Palacios, E., Llaro, K., Shin, S., Becerra M., Murray, M., Mitnick, C. (2008) Risk factors and mortality associated with default from multidrug-resistant tuberculosis treatment, Clin Infect Dis, 14, 1844-1851. doi: 10.1086/588292
  • Fischer, N.O., Tok, J.B.H., Tarasow, T.M. (2008) Massively Parallel Interrogation of Aptamer Sequence, Structure and Function, PloS one, 3, e2720. doi:10.1371/journal.pone.0002720.
  • Fine, P.E. (1995) Variation in protection by BCG: implications of and for heterologous immunity, Lancet, 346, 1339.
  • Fang, R., Nixon, P.F., Duggleby, R.G. (1998) Identification of the catalytic glutamate in the E1 component of human pyruvate dehydrogenase, FEBS Lett, 437, 273-7.
  • Espinal, M.A., Laszlo, A., Simonsen, L., Boulahbal, F., Kim, S.J., Reniero, A., Hoffner, S., Rieder, H.L., Binkin, N., Dye, C., Williams, R., Raviglione, M.C. (2001) Global trends in resistance to antituberculosis drugs. World Health Organization-International Union against Tuberculosis and Lung Disease Working Group on Anti-Tuberculosis Drug Resistance Surveillance, N Engl J Med, 344, 1294-1303.
  • Engel, S., Vyazmensky, M., Berkovich, D., Barak, Z., Chipman, D.M. (2004) Substrate range of acetohydroxy acid synthase I from Escherichia coli in the stereo selective synthesis of alpha- hydroxy ketones, Biotechnol Bioeng. 88, 825-831.
  • Ellington, A.D., Szostak, J.W. (1990) In vitro selection of RNA molecules that bind specific ligands, Nature 346, 818-822.
  • Dye, C. and Williams, B.G. (2000) Criteria for the control of drug-resistant tuberculosis, Proc Natl Acad Sci U S A, 97, 8180-8185.
  • Dye, C. (2006) Global epidemiology of tuberculosis. Lancet, 6, 938-40.
  • Dupont, D. M., Andersen, L. M., Botkjaer, K. A., and Andreasen, P. A. (2011) Nucleic acid aptamers against proteases, Current medicinal chemistry18, 4139-4151.
  • Duggleby, R.G., McCourt, J.A., Guddat, L.W. (2008) Structure and mechanism of inhibition of plant acetohydroxyacid synthase, Plant Physiol Biochem, 46, 309-324.
  • Deng, W., Cao, Y., Yang, Q., Liu, M.J., Mei, Y., Zheng, M.Q. (2014) Different cross-resistance patterns to AHAS herbicides of two tribenuron-methyl resistant flixweed (Descurainiasophia L.) biotypes in China, Pesticide Biochemistry and Physiology, 112, 26-32.
  • DeLano, W.L. (2010) The PyMOL Molecular Graphics System, DeLano Scientific, San Carlos, CA, USA, 2002. http://www.pymol.org.
  • Corpet, F. (1988) Multiple sequence alignment with hierarchical clustering, Nucl Acids Res, 16, 10881-10890.
  • Choi, K.J., Yu, Y.G., Hahn, H.G., Choi, J.D., Yoon, M.Y. (2005) Characterization of acetohydroxyacid synthase from Mycobacterium tuberculosis and the identification of its new inhibitor from the screening of a chemical library, FEBS Lett, 579, 4903-4910
  • Choi, K.J., Noh, K.M., Kim, D.E., Ha, B.H., Kim, E.E., Yoon, M.Y. (2007) Identification of the catalytic subunit of acetohydroxyacid synthase in Haemophilus influenza and its potent inhibitors, Arch Biochem Biophys, 466, 24-30.
  • Choi, K.J., Noh, K.M., Choi, J.D., Park, J.S., Won, H.S., Kim, J.R., Kim, J.S., Yoon, M.Y. (2006) Sulfonylurea is a Non-competitive Inhibitor of Acetohydroxyacid Synthase from Mycobacterium tuberculosis, Bull Korean Chem Soc, 27, 1697.
  • Choi, J.S., Kim, S.G., Lahousse, M., Park, H.Y., Park, H.C, Jeong, B., Kim, J., Kim, S.K., Yoon, M.Y. (2011) Screening and Characterization of High-Affinity ssDNA Aptamers against Anthrax Protective Antigen, Journal of Biomolecular Screening, 16, 266-271.
  • Choi, J.D., Gedi, V., Pham, C.N., Ryu, K.H., Lee, H.S., Kim, G.H., Yoon, M.Y. (2010) Site- directed mutagenesis of catalytic and regulatory subunits of Mycobacterium tuberculosis acetohydroxyacid synthase, Enzyme Microb. Technol, 46, 304-8.
  • Choi, J., Jung, Y. G., Kim, J., Kim, S., Jung, Y., Na, H., Kwon, S. (2013) Rapid antibiotic susceptibility testing by tracking single cell growth in a microfluidic agarose channel system, Lab Chip, 13, 280.
  • Cho, H., Lee, M.Y., Baig, I.J., Ha, N.R., Kim, J., Yoon, M.Y. (2013) Biochemical characterization and evaluation of potent inhibitors of the Pseudomonas aeruginosa PA01 acetohydroxyacid synthase, Biochimie 95, 1411-1421.
  • Chipman, D.M., Duggleby, R.G., Tittmann, K. (2005) Mechanisms of acetohydroxyacid synthases, CurrOpinChemBiol, 9, 475-481.
  • Chipman, D.M., Barak, Z., Shaanan, B., Vyazmensky, M., Binshtein, E., Belenky, I., Temam, V., Steinmetz, A., Golbik, R., Tittmann, K. (2009) Origin of the specificities of acetohydroxyacid synthases and glyoxylatecarboligase, J Mol Catal B: Enzym, 61, 50-5.
  • Chien, P.N., Moon, J.Y., Cho, J.H., Lee, S.J., Park, J.S., Kim, D.E., Park, Y., Yoon, M.Y. (2010) Characterization of acetohydroxyacid synthase I from Escherichia coli K-12 and identification of its inhibitors, Biosci Biotechnol Biochem, 74, 2281-2286.
  • Chien, P.N., Jung, I.P., Reddy, K.V., Yoon, M.Y. (2012) Mechanism Studies of Substituted Triazol-1-yl-pyrimidine Derivatives Inhibition on Mycobacterium tuberculosis Acetohydroxyacid Synthase, Bull Korean Chem Soc, 33, 4074.
  • Chen, F., Zhou, J., Luo, F. L., Mohammed, A. B., and Zhang, X. L. (2007) Aptamer from whole-bacterium SELEX as new therapeutic reagent against virulent Mycobacterium tuberculosis, Biochemical and biophysical research communications, 357, 743-748.
  • Chen, F., Zhou, J., Huang, Y.H., Huang, F.Y., Liu, Q., Fang, Z.G., Yang, S., Xiong, M., Lin, Y.Y., Tan, G.H. (2013) Function of ssDNA aptamer and aptamer pool against Mycobacterium tuberculosis in a mouse model, Mol Med Rep, 7, 669-673.
  • Chen, C.N., Chen, Q., Liu, Y.C. et al. (2010) Syntheses and herbicidal activity of new triazolopyrimidine-2-sulfonamides as acetohydroxyacid synthase inhibitor, Bioorg Med Chem 18, 4897-904.
  • Chen, B., Lv, L.L., Ji, F.Q., et al. (2009) Design and synthesis of N-2,6-difluorophenyl-5- methoxyl-1,2,4-triazolo[1,5-] pyrimidine-2-sulfonamide as acetohydroxyacid synthase inhibitor, Bioorg MedChem, 17, 3011-7.
  • Candy, J.M. and Duggleby, R.G. (1994) Investigation of the cofactor binding site of Zymomonasmobilis pyruvate decarboxylase by site-directed mutagenesis, Biochem J, 300, 7-13.
  • Bussi, G., Donadio, D., Parrinello, M. (2007) Canonical sampling through velocity rescaling, J ChemPhys, 126, 014101 (doi: 10.1063/1.2408420).
  • Bradford, M. M. (1976) A rapid and sensitive method for the quantitation ofmicrogram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72, 248-254.
  • Boigegrain, R.A., Liautard, J.P.& Kohler, S. (2005) Targeting of the virulence factor acetohydroxyacid synthase by sulfonylureas results in inhibition of intramacrophagic multiplication of Brucellasuis, Antimicrob Agents Chemother 49, 3922-3925.
  • Blomqvist, K., Nikkola, M., Lehtovaara, P., Suihko, M. L., Airaksinen, U., Straby, K. B., Knowles, J. K., Penttila, M.E. (1993) Characterization of the genes of the 2,3-butanediol operons from Klebsiella terrigena and Enterobacter aerogenes, J Bacteriol, 175, 1392-1404.
  • Berendsen, H.J.C., van der, Spoel, D., van Drunen, R. (1995) GROMACS: A message-passing parallel molecular dynamics implementation, ComputPhysCommun, 91, 43-56.
  • Berendsen, H.J.C., Postma, J.P.M., van,Gunsteren, W.F., Hermans, J. (1981) Interaction models for water in relation to protein hydration. In: Pullman B (ed) Intermolecular Forces, D. Reidel Publishing Company, pp. 331-342.
  • Barak, Z., Calvo J.M., Schloss J.V (1988) Acetolactate synthase Isozyme III from Escherichia coli, Methods Enzymol, 166, 455-458.
  • Barak, Z, Chipman, D.M., Gollop, N. (1987) Physiological implications of the specificity of acetohydroxy acid synthase isozymes of enteric bacteria, J Bacteriol, 169, 3750-3756.
  • Bar-Ilan, A., Tittmann, K.V.B., Golbik, R., Vyazmensky, M., Hubner, G., Barak, Z., Chipman, D.M. (2001) Binding and activation of thiamin diphosphate in acetohydroxyacid synthase, Biochemistry, 40, 11946-54.
  • Baptista, I. M., Oelemann, M.C., Opromolla, D.V., Suffys, P.N. (2002) Drug Resistance and Genotypes of Strains of Mycobacterium tuberculosis Isolated from Human Immunodeficiency Virus-Infected and Non-Infected Tuberculosis Patients in Bauru, Sao Paulo, Brazil, Memorias do Instituto Oswaldo Cruz, 97, 1147-1152.
  • Bange, F.C., Brown, A.M., W.R. Jacobs, W.R.Jr. (1996) Leucine auxotrophy restricts growth of Mycobacterium bovis BCG in macrophages, Infect Immun, 64, 1794-1799.
  • Ban, S.R., Niu, C.W., Chen, W.B., Yu, Z.H., Wu, S., Wang, C., Xi, Z. (2007) Study on the bioactivity changes of hydroxylated sulfonylureas derivatives: a possible metabolism, Chin ChemLett, 18, 205-208.
  • Baig, I.A., Gedi, V., Lee, S.C., Koh, S.H., Yoon, M.Y. (2013) Role of a highly conserved proline-126 in ThDP binding of Mycobacterium tuberculosis acetohydroxyacid synthase, EnzymeMicrobTechnol, 53, 243-9.
  • Awasthy, D., Gaonkar, S., Shandil, R.K., Yadav, R., Bharath, S., Marcel, N., Subbulakshmi, V., Sharma, U. (2009) Inactivation of the ilvB1 gene in Mycobacterium tuberculosis leads to branched-chain amino acid auxotrophy and attenuation of virulence in mice, Microbiology, 155, 2978-2987.
  • Atkins, T., Prior, R.G., Mack, K., Russell, P., Nelson, M., Oyston, P.C.F., Dougan, G., Titball, R.W. (2002) A mutant of Burkholderia pseudomallei, auxotrophic in the branched chain amino acid biosynthetic pathway, is attenuated and protective in a murine model of melioidosis, Infect Immun, 70, 5290-5294.
  • Arfin, S.M. and Koziell, D.A. (1973) Acetolactate synthase of Pseudomonas aeruginosa II. Evidence for the presence of two nonidentical subunits, Biochim Biophys Acta, 321, 365-360.
  • Arfin, S.M. and Koziell, D.A. (1973) Acetolactate synthase of Pseudomonas aeruginosa I. Purification and allosteric properties, Biochim Biophys Acta, 321: 348-355.
  • Abell, L.M. and Schloss, J.V. (1991) Oxygenase side reactions of acetolactate synthase and other carbanionforming enzymes, Biochemistry, 30, 7883-7887.
  • AIDS Control and Prevention (AIDSCAP) (1996) Project of Family Health Internal, the Francois-Xavier Bagnoud Center for Public Health and Human Rights of the Harvard School of Public Health, UNAIDS. The Status and Trends of the Global HIV/AIDS Pandemic.