박사

화학기상응축합성 TiO2 기반 망간 산화물 나노촉매 표면특성 및 환경오염물질 저온 분해 특성 = Surface characteristics of TiO2-based MnOx nanocatalysts synthesized by chemical vapor condensation and low-temperature degradation characteristics of environmental pollutants over the catalysts

박은석 2015년
논문상세정보
' 화학기상응축합성 TiO2 기반 망간 산화물 나노촉매 표면특성 및 환경오염물질 저온 분해 특성 = Surface characteristics of TiO2-based MnOx nanocatalysts synthesized by chemical vapor condensation and low-temperature degradation characteristics of environmental pollutants over the catalysts' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • 망간 산화물 나노촉매
  • 저온 분해
  • 질소산화물
  • 톨루엔
  • 화학기상응축
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
154 0

0.0%

' 화학기상응축합성 TiO2 기반 망간 산화물 나노촉매 표면특성 및 환경오염물질 저온 분해 특성 = Surface characteristics of TiO2-based MnOx nanocatalysts synthesized by chemical vapor condensation and low-temperature degradation characteristics of environmental pollutants over the catalysts' 의 참고문헌

  • 기상 공정에 의한 나노 미립자 제조
    김교선 김동주 Korean Chemical Engineering Research, ;45(6):536-546 [2007]
  • 광촉매 TiO2의 특성 및 제조 방법과 전망
    지충수 대한금속재료학회 ;15:42-57 [2002]
  • 9) Lee JY, Kim SB, Hong SC. Characterization and reactivity of natural manganese ore catalysts in the selective catalytic oxidation of ammonia to nitrogen. Chemosphere 2003;50:1115-1122.
  • 8) Masciangioli T, Zhang WX. Environmental technologies at the nanoscale. Environmental Science and Technology 2003;1:102-108.
  • 79) Sleiman M, Conchon P, Ferronato C, Chovelon JM. Photocatalytic oxidation of toluene at indoor air levels (ppbv): towards a better assessment of conversion, reaction intermediates and mineralization. Applied Catalysis B: Environmental 2009;86:159?165.
  • 78) Tsou J, Pinard L, Magnoux P. Figueiredo JL, Guisnet M. Catalytic oxidation of volatile organic compounds (VOCs): Oxidation of o-xylene over Pt/HBEA catalysts. Applied Catalysis B: Environmental. 2003;46:371-379.
  • 77) Ko JH, Park SH, Jeon JK, Kim SS, Kim SC, Kim JM, Chang D, Park YK. Low temperature selective catalytic reduction of NO with NH3 over Mn supported on Ce0.65Zr0.35O2 prepared by supercritical method: Effect of Mn precursors on NO reduction. Catalysis Today 2012;185:290?295.
  • 76) Ettireddy PR, Ettireddy N, Mamedov S, Boolchand P, Smirniotis PG. Surface characterization studies of TiO2 supported manganese oxide catalysts for low temperature SCR of NO with NH3. Applied Catalysis B: Environmental, 2007;76:123? 134.
  • 75) Santos VP, Pereira MFR, Orfao JJM, Figueiredo JL. The role of lattice oxygen on the activity of manganese oxides towards the oxidation of volatile organic compounds. Applied Catalysis B: Environmental 2010;99:353?363.
  • 74) Wu Z, Tang N, Xiao L, Liu Y, Wang H. MnOx/TiO2 composite nanoxides synthesized by deposition-precipitation method as a superior catalyst for NO oxidation. Journal of Colloid and Interface Science 2010;352:143?148.
  • 73) Pena DA, Uphade BS, Smirniotis PG. TiO2-supported metal oxide catalysts for low-temperature selective catalytic reduction of NO with NH3: I. Evaluation and characterization of first row transition metals. Journal of Catalysis 2004;221:421? 431.
  • 72) Neatu S, Parvulescu VI, Epure G, Petrea N, Somoghi V, Ricchiardi G, Bordiga SA. Zecchina, M/TiO2/SiO2 (M = Fe, Mn, and V) catalysts in photo-decomposition of sulfur mustard. Applied Catalysis B: Environmental 2009;91:546?553.
  • 71) Pechi G, Reyes P, Lopez T, Gomez R, Moreno A, Fierro JLG. Effect of precursors on surface and catalytic properties of Fe/TiO2 catalysts. Journal of Chemical Technology and Biotechnology 2002;77:944?949.
  • 70) Wu X, Liu S, Lin F, Weng D. Nitrate storage behavior of Ba/MnOx?CeO2 catalyst and its activity for soot oxidation with heat transfer limitations. Journal of Hazardous Materials 2010;181:722-728.
  • 7) Narayanan R, El-Sayed MA. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability. Journal of Physical Chemistry B 2005;109:12663-12676.
  • 69) Jiang BQ, Liu Y, Wu ZB. Low-temperature selective catalytic reduction of NO on MnOx/TiO2 prepared by different methods. Journal of Hazardous Materials 2009;162:1249?1254.
  • 67) Irfan M, Goo J, Kim S. Co3O4 based catalysts for NO oxidation and NOx reduction in fast SCR process. Applied Catalysis B: Environmental 2008;78:267?274.
  • 66) Legube B, Leitner KV. Catalytic ozonation: a promising advanced oxidation technology for water treatment. Catalysis Today 1999;53:61-72.
  • 65) Delagrange S, Pinard L, Tatiboue JM. Combination of a non-thermal plasma and a catalyst for toluene removal from air: Manganese based oxide catalysts. Applied Catalysis B: Environmental 2006;68:92-98.
  • 64) Li W, Gibbs GV, Oyama ST. Mechanism of ozone decomposition on a manganese oxide catalyst: in situ raman spectroscopy and ab initio molecular orbital calculations. Journal of the American Chemical Society 1998;120:9041?9046.
  • 63) Reed C, Lee YK, Oyama ST. Structure and oxidation state of silica-supported manganese oxide catalysts and reactivity for acetone oxidation with ozone. The Journal of Physical Chemistry B 2006;110:4207?4216.
  • 62) Reed C, Xi Y, Oyama ST. Distinguishing between reaction intermediates and spectators: a kinetic study of acetone oxidation using ozone on a silica supported manganese oxide catalyst. Journal of Catalysis 2005;235:378?392.
  • 61) Xi Y, Reed C, Lee YK, Oyama ST. Acetone oxidation using ozone on manganese oxide catalysts. The Journal of Physical Chemistry B 2005;109:17587?17596.
  • 60) Radhakrishnan R, Oyama ST, Chen JG, Asakura K. Electron transfer effects in ozone decomposition on supported manganese oxide. The Journal of Physical Chemistry B 2001;105:4245?4253.
  • 6) Kung HH, Kung MC. Nanotechnology: applications and potentials for heterogeneous catalysis. Catalysis Today 2004;97:219-224.
  • 59) Mills A, Lee SK, Lepre A. Photo decomposition of ozone sensitized by a film of titanium dioxide on glass. Journal of Photochemistry and Photobiology A: Chemistry 2003;155:199-205.
  • 58) Lim HN, Choi H, Hwang TM, Kang JW. Characterization of ozone decomposition in a soil slurry: Kinetics and mechanism. Water Research 2002;36:219-229.
  • 57) Viner AS, Lawless PA, Ensor DS, Sparks LE. Ozone generation in dc-energized electrostatic precipitator. IEEE Trans. on Industry Application 1992;28:504-512.
  • 56) Ohkubo T, Hamasaki S, Nomoto Y, Chang J, Adachi T. The effect of corona wire heating on the downstream ozone concentration profiles in an air-cleaning wire-duct electrostatic precipitator. IEEE Trans. on Industry Applications 1990;26:542-549.
  • 55) Liu L, Guo J, Li J, Sheng L. The effect of wire heating and configuration on ozone emission in a negative ion generator. Journal of Electrostatics 2000;48:81-91.
  • 54) Sekiguchi K, Sanada A, Sakamoto K. Degradation of toluene with an ozone decomposition catalyst in the presence of ozone, and the combined effect TiO2 addition. Catalysis Communications 2003;4:247-252.
  • 53) Schlegelmilch M, Streese J, Stegmann R. Odour management and treatment technologies: an overview. Waste Management 2005;25:928-939.
  • 52) Fan X, Zhu TL, Wang MY, Li XM. Removal of low-concentration BTX in air using a combined plasma catalysis system. Chemosphere 2009;75:1301-1306.
  • 51) Einaga H, Ogata A. Benzene oxidation with ozone over supported manganese oxide catalysts: effect of catalyst support and reaction conditions. Journal of Hazardous Materials 2009;164:1236-1241.
  • 50) Jeong JY, Sekiguchi K, Lee W, Sakamoto K. Photodegradation of gaseous volatile organic compounds (VOCs) using TiO2 photoirradiated by an ozoen-producing UV lamp: decoposition characteristics, identification of by-products and watersoluble organic intermediates, Journal of Photochemistry and Photobiology A: Chemistry 2004;169:279-287.
  • 5) Pratsinis SE, Mastrangelo SVR. Material synthesis in aerosol reactors. Chemical Engineering Progress 1989;85:62-66.
  • 49) Ramanathan K, Spivey JJ. Catalytic oxidation of 1,1 dichloroethane. Combustion Science and Technology 1989;63:247-255
  • 48) Liotta LF. Catalytic oxidation of volatile organic compounds on supported noble metals. Applied Catalysis B: Environmental 2010;100:403-412.
  • 47) Roanld MH, Farrauto RJ, Gulati ST. Catalytic air pollution control; Commercial Technology second ed. Wiley interscience 2002;282
  • 46) Park ES, Le HJ, Chin SM, Kim JS, Bae GN, Jurng JJ. Synthesis and enhanced photocatalytic activity of Mn/TiO2 mesoporous materials using the impregnation method through CVC process. Journal of Porous Materials 2012;19:877?881.
  • 45) Park ES, Chin SM, Kim JS, Bae GN, Jurng JJ. Preparation of MnOx/TiO2 ultrafine nanocomposite with large surface area and its enhanced toluene oxidation at low temperature. Powder Technology 2011;208:740?743.
  • 44) Chin SM, Park ES, Kim MS, Jurng JJ. Photocatalytic degradation of methylene blue with TiO2 nanoparticles prepared by a thermal decomposition process. Powder Technology 2010;201:171?176.
  • 43) Nohman AKH, Ismail HM, Hussein GAM. Thermal and chemical events in the decomposition course of manganese compounds. Journal of Analytical and Applied Pyrolysis 1995;34:265-278.
  • 42) Singoredjo L, Korver R, Kapreijn F, Moulijn JA. Alumina supported manganese oxides for the low-temperature selective catalytic reduction of nitric oxide with ammonia. Applied Catalysis B: Environmental 1992;1:297-316.
  • 41) Hyun BS, Kim KS. A study on modeling of tube furnace reactor for fabrication of ultrafine TiO2 powders. Korean Chemical Engineering Research 1995;33:183-191.
  • 40) Nakaso K, Okuyama K, Shimada M, Pratsinis SE. Effect of reaction temperature on CVD-made TiO2 primary particle diameter. Chemical Engineering Science 2003;58:3327-3335.
  • 4) Kruis FE, Fissan H, Peled A. Synthesis of nanoparticles in the gas phase for electric, optical and magnetic applications-a review. Journal of Aerosol Science 1998;29:511-535.
  • 39) Kim KS. Analysis of ultrafine particles generation and deposition using tube furnace reactor. AIChE Journal 1997;43:2679-2687.
  • 38) Choi JG, Park KY. Effect of reaction atmosphere on particle morphology of TiO2 produced by thermal decomposition of titanium tetraisopropoxide. Journal of Nanoparticle Research 2006;8:269-278.
  • 37) Morooka S, Kobata A, Umeda T, Kusakabe K. Average size and rutile content of TiO2 particles produced by oxidation of TiCl4 without additives in aerosol reactors. Journal of Chemical Engineering of Japan 1989;22:94-96.
  • 36) Wu JJ, Flagan RC. Onset of runaway nucleation in aerosol reactors. Journal of Applied Physics 1987;61:1365-1371.
  • 35) Jung J, Perrut M. Particle design using supercritical fluids: literature and patent survey. The Journal of Supercritical Fluids 2001;20:79-219.
  • 34) Cloupeau M, Prunet-Foch B. Electro hydrodynamic spraying functioning modes: a critical review. Journal of Aerosol Science 1994;25:1021-1036.
  • 33) Nakaso K, Han B, Ahn KH, Choi M, Okuyama K. Synthesis of non-agglomerated nanoparticles by an electrospray assisted chemical vapour deposition (ES-CVD) method. Journal of Aerosol Science 2003;34:869-881.
  • 32) M dler L, Kammier HK, Mueller R, Pratsinis SE. Controlled synthesis of nanostructured particles by flame spray pyrolysis. Journal of Aeroso Science 2002;33:369-389.
  • 31) Darabont A, Names-Incze P, Kertesz K, Tapaszto L, Koos AA, Osvath Z, Sarkozi Z, Vertesy Z, Horvath ZE, Biro LP. Synthesis of carbon nanotubes by spray pyrolysis and their investigation by electron microscopy. Journal of Optoelectronics and Advanced Materials 2005;7:631-636.
  • 30) Gunther B, Kumpmann A. Ultrafine Oxide powders prepared by inert gas evaporation. Nanostructured Materials 1992;1:27-30.
  • 3) Pratsinis SE, Vemury S. Particle formation in gases : a review. Powder Technology 1996;88:267-273.
  • 29) Iwama S, Hayakawa K, Arizumi T. Ultrafine powders of TiN and AlN produced by a reactive gas evaporation technique with electron beam heating. Journal of Crystal Growth 1982;56:265-269.
  • 28) Girshik SL, Chiu CP, McMurry PH. Modelling particle formation and growth in a plasma synthesis reactor. Plasma Chemistry and Plasma Processing 1988;8:145-157.
  • 27) Mueller R, Jossen R, Kammler HK, Pratsinis SE, Akhtar MK. Growth of zirconia particles made by flame spray pyrolysis. AIChE Journal 2004;50:3085-3094.
  • 26) Jang HD. Seong CM, Suh YJ, Kim HC, Lee CK. Synthesis of lithum-cobalt oxide nano particles by flame spray pyrolysis. Aerosol Science and Technology 2004;38:1027-1032.
  • 25) Jung CH, Park SH, Kim YP. Size Distribution of polydispersed aerosols during condensation in the continuum region: analytical approach using the moment method. Journal of Aerosol Science 2006;37:1400-1406.
  • 24) Siegel RW, Morfin-Lopez JL, Sanchez JM. Advanced topics in materials science and engineering. Plenum;New York:1993.
  • 23) Gurav A, Kodas T, Pluym T, Xiong Y. Aerosol processing of materials. Aerosol Science and Technology 1993;19:411-452.
  • 22) Jeon KJ, Jung YW. A simulation study on the compression behavior of dust cakes. Powder Technology 2004;141:1-11
  • 21) Kim MC, Bae GN, Moon KC, Park JY. Formation and growth of atmospheric aerosols by water vapor reactions in an indoor smog chamber. Journal of Korean Society for Atmospheric Environment 2004;20:161-174.
  • 20) Hong SC. A Study on Simulation of desulfurization in a continuous fluidization bed using natural manganese ore. Korean Chemical Engineering Research 2005;43:278-285.
  • 19) Yamashita T, Vannice A. Temperature-programmed desorption of NO adsorbed on Mn2O3 and Mn3O4. Applied Catalysis B: Environmental 1997;13:141-155.
  • 18) Kim SS, Hong SC. The Emission of NO2 and NH3 in selective catalytic reduction over manganese oxide with NH3 at low temperature. Journal of Industrial and Engineering Chemistry 2007;18:255261.
  • 17) Smirniotis PG, Sreekanth PM, Pena DA, Jenkins RG. Manganese oxide catalysts supported on TiO2, Al2O3, and SiO2: a comparison for low-temperature SCR of NO with NH3. Industrial & Engineering Chemistry Research 2006;45:6436-6443.
  • 16) Tsuzuki T, McCormick P.G. Synthesis of Cr2O3 nanoparticles by mechanochemical processing. Acta Materialia 2000;48:2795? 2801.
  • 15) Bal ? P, Boldi? rov E, Godo? kov E, Brian?in J. Mechano chemical route for sulphide nanoparticles preparation. Materials Letters 2003;57:1585?1589.
  • 14) Ding J, Tsuzuki T, McCormick PG. Ultrafine alumina particles prepared by mechanochemical/thermal processing. Journal of the American Ceramic Society 1996;79:2956?2958.
  • 13) Gopalan S, Singhal SC. Mechanochemical synthesis of nano sized CeO2. Scripta Materialia 2000;42:993?996.
  • 12) Billik P, Plesch G. Mechanochemical synthesis of anatase and rutile nanopowders from TiOSO4. Materials Letters 2007;61:1183?1186.
  • 11) Billik P, Plesch G. Mechanochemical synthesis of nano crystalline TiO2 from liquid TiCl4. Scripta Materialia 2007;56:979?982.
  • 10) Pengyi Z, Fuyan L, Gang Y, Qing C, Wanpeng Z. A comparative study of decomposition of gaseous toluene by O3/UV, TiO2/UV and O3/TiO2/UV. Journal of Photochemistry and Photobiology A: Chemistry 2003;156:189-194.
  • 1) Choi M. Research in Korea on gas phase synthesis and controlof nanoparticles. Journal of Nanoparticle Research 2001;3:201-211.