박사

CO2/CH4 separation of simulated biogas by polymeric membranes

전용우 2015년
논문상세정보
' CO2/CH4 separation of simulated biogas by polymeric membranes' 의 주제별 논문영향력
논문영향력 선정 방법
논문영향력 요약
주제
  • biogas
  • carbon dioxide
  • membrane
  • methane
  • separation
  • tetrageneration
동일주제 총논문수 논문피인용 총횟수 주제별 논문영향력의 평균
649 0

0.0%

' CO2/CH4 separation of simulated biogas by polymeric membranes' 의 참고문헌

  • Zimmerman, C.M., and Koros, W.J. (1999). Polypyrrolones for membrane gasseparations. 1. Structural comparison of gas transport and sorption properties. J. Polym. Sci.: Part B: Polym. Phys. 37(12), 1235.
  • Zimmerman, C.M., Singh, A., and Koros, W.J. (1997). Tailoring mixed matrixcomposite membranes for gas separations. J. Membr. Sci. 137(1), 145.
  • Zhou, W., He, J., Cui, S., and Gao, W. (2011). Studies of electrospun celluloseacetate nanofibrous membranes. Open Mater. Sci. J. 5, 51.
  • Zhang, Y., Sunarso, J., Liu, S., and Wang, R. (2013). Current status anddevelopment of membranes for CO2/CH4 separation: A review. Int. J. Greenhouse Gas Control 12, 84.
  • Zhang, Y., Balkus Jr, K.J., Musselman, I.H., and Ferraris, J.P. (2008). Mixedmatrixmembranes composed of Matrimid?? and mesoporous ZSM-5 nanoparticles. J. Membr. Sci. 325, 28.
  • Yeong, Y.F., Wang, H., Pramoda, K.P., and Chung, T.S. (2012). Thermalinduced structural rearrangement of cardo-copolybenzoxazole membranesfor enhanced gas transport properties. J. Membr. Sci. 397?398, 51.
  • Yang, L., Fang, J., Meichin, N., Tanaka, K., Kita, H., and Okamoto, K. (2001).
  • Yampolskii, Y.P., Pinnau, I., and Freeman, B.D. (2006). Materials Science ofMembranes for Gas and Vapor Separation. New York: Wiley.
  • Yamamoto, O., Takuma, T., and Kinouchi, M. (2002). Recovery of SF6 fromN2/SF6 gas mixtures by using a polymer membrane. IEEE Electrical InsulationMagazine 18, 32.
  • Yadvika, Santosh, Sreekrishnan, T.R., Kohli, S., and Rana, V. (2004). Enhancementof biogas production from solid substrates using different techniques- A review. Bioresour. Technol. 95, 1.
  • Xing, R., and Ho, W.S. (2009). Synthesis and characterization of crosslinkedpolyvinylalcohol/polyethyleneglycol blend membranes for CO2/CH4 separation. J. Taiwan Institute of Chem. Engineers 40, 654.
  • Xiao, Y., Yuan, H., Pang, Y., Chen, S., Zhu, B., Zou, D., Ma, J., Yu, L., and Li,X. (2014). CO2 Removal from Biogas by Water Washing System. Chinese J. Chem. Eng. DOI: 10.1016/j.cjche.2014.06.001150
  • Xiao, Y., Chung, T.S., Guan, H.M., and Guiver, M.D. (2007). Synthesis,cross-linking and carbonization of co-polyimides containing internal acetyleneunits for gas separation. J. Membr. Sci. 302(1), 254.
  • Won, J.O., Park, H.C., and Kang, Y.S. (1999). Polymer membranes for gasseparation. Polym. Sci. Technol. 10(2), 170.
  • Wijmans, J.G., and Baker, R.W. (1995). The solution-diffusion model: areview. J. Membr. Sci. 107, 1.
  • White, L.S., Blinka, T.A., Kloczewski, H.A., and Wang, I.F. (1995). Propertiesof a polyimide gas separation membrane in natural gas streams. J. Membr. Sci. 103(1), 73.
  • Weng, T.H., Tseng, H.H., and Wey, M.Y. (2011). Effect of SBA-15 texture onthe gas separation characteristics of SBA-15/polymer multilayer mixedmatrix membrane. J. Membr. Sci. 369, 550.
  • Weiland, P. (2010). Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 85, 849.
  • Watanabe, H. (1999). CO2 removal from synthetic natural gas for city gas use. J. Membr. Sci. 154, 121.
  • Ward, A.J., Hobbs, P.J., Holliman, P.J., and Jones, D.L. (2008). Optimisationof the anaerobic digestion of agricultural resources. Bioresour. Technol. 99,7928.
  • Wang, Y.C., Huang, S.H., Hu, C.C., Li, C.L., Lee, K.R., Liaw, D.J., and Lai,J.Y. (2005). Sorption and transport properties of gases in aromatic polyimidemembranes. J. Membr. Sci. 248(1), 15.
  • Wang, X., Chen, H., Zhang, L., Yu, R., Qu, R., and Yang, L. (2014). Effects ofcoexistent gaseous components and fine particles in the flue gas on CO2separation by flat-sheet polysulfone membranes. J. Membr. Sci. 470, 237.
  • Wang, L., Cao, Y., Zhou, M., Zhou, S.J., and Yuan, Q. (2007). Novelcopolyimide membranes for gas separation. J. Membr. Sci. 305(1), 338.
  • Wahab, M.F.A., Ismail, A.F., and Shilton, S.J. (2012). Studies on gas permeationperformance of asymmetric polysulfone hollow fiber mixed matrixmembranes using nanosized fumed silica as fillers. Sep. Purif. Technol. 86,41.
  • Vu, D.Q., Koros, W.J., and Miller S.J. (2003). Effect of condensable impuritiesin CO2/CH4 gas feeds on carbon molecular sieve hollow-fiber membranes. Ind. Eng. Chem. Res. 42(5), 1064.
  • Van ?t Hof, J.A., Reuvers, A.J., Boom, R.M., Rolevink, H.H.M., and SmoldersC.A. (1992). Preparation of asymmetric gas separation membranes withhigh selectivity by a dual-bath coagulation method. J. Membr. Sci. 70, 17.
  • United States Environment Protection Agency (US EPA). (2014). Anaerobicdigestion 101. Available at: www.epa.gov/methane/agstar/anaerobic/ad101/index.htmlWellinger, A., and Lindberg, A. (2000). Biogas upgrading and utilization. IEABioenergy Task 24.
  • Tippayawong, N., and Thanompongchart, P. (2010). Biogas quality upgradeby simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35, 4531.
  • Tanaka, K., Okano, M., Toshino, H., Kita, H., and Okamoto, K.I. (1992). Effect of methyl substituents on permeability and permselectivity of gasesin polyimides prepared from methyl?substituted phenylenediamines. J. Polym. Sci.: Part B: Polym. Phys. 30(8), 907.
  • Tan, J.M.A., Noh, S.-H., Chowdhurry, G., and Matsuura, T. (2000). Influenceof surface tensions of solvent/nonsolvent mixtures in membrane castingsolutions on the performance of poly(2,6-dimethyl-1,4-phenylene) oxidemembranes for gas separation applications. J. Membr. Sci. 174(2), 225.
  • Takada, K., Matsuya, H., Masuda, T., and Higashimura, T. (1985). Gaspermeability of polyacetylenes carrying substituents. J. appl. Polym. Sci. 30(4), 1605.
  • Stookey, D.J., Graham, T.E., and Pope, W.M. (1984). Natural gas processingwith PRISM?? separators. Environ. Prog. 3, 212.
  • Stern, S.A. (1994). Polymer for gas separation: The next decade. J. Membr. Sci. 94, 1.
  • Staudt-Bickel, C., and Koros, W.J. (1999). Improvement of CO2/CH4 separationcharacteristics of polyimides by chemical crosslinking. J. Membr. Sci. 155(1), 145.
  • Song, C. (2006). Global challenges and strategies for control, conversion andutilization of CO2 for sustainable development involving energy, catalysis,adsorption and chemical processing. Catalysis Today 115, 2.
  • Son, E.C. (2010). A study on optimal conditions for biogas separation usingpolyacetylene membrane [Master ?s thesis]. Busan, Korea: University ofDong-Eui.
  • Shieh, J.J., Chung, T.S., Wang, R., Srinivasan, M.P., and Paul, D.R. (2001). Gas separation performance of poly(4-vinylpyridine)/polyetherimide compositehollow fibers. J. Membr. Sci. 182, 111.
  • Shida, Y., Sakaguchi, T., Shiotsuki, M., Sanda, F., Freeman, B.D., and Masuda,T. (2006). Synthesis and properties of membranes of poly(diphenylacetylenes)having fluorines and hydroxyl groups. Macromolecules 39(2), 569.
  • Shao, L., Chung, T.S., Goh, S.H., and Pramoda, K.P. (2005). The effects of1,3-cyclohexanebis(methylamine) modification on gas transport and plasticizationresistance of polyimide membranes. J. Membr. Sci. 267(1), 78.
  • Scholz, M., Melin, T., and Wessling, M. (2013). Transforming biogas into biomethaneusing membrane technology. Renew. Sustain. Energy Rev. 17, 199.
  • Scholes, C.A., Stevens, G.W., and Kentish, S.E. (2012). Membrane gasseparation applications in natural gas processing. Fuel 96, 15.
  • Scholes, C.A., Chen, G.Q., Stevens, G.W., and Kentish, S.E. (2010). Plasticizationof ultra-thin polysulfone membranes by carbon dioxide. J. Membr. Sci. 346, 208.
  • Schell, W.J., Houston, C.D., and Hopper, W.L. (1983). Membranes canefficiently separate carbon dioxide from mixtures. Oil & Gas J. Technol. 81(33), 52.
  • Sanders, D.F., Smith, Z.P., Ribeiro Jr, C.P., Guo, R., McGrath, J.E., Paul, D.R.,and Freeman, B.D. (2012). Gas permeability, diffusivity, and free volumeof thermally rearranged polymers based on 3,3'-dihydroxy-4,4'-diaminobiphenyl(HAB) and 2,2'-bis-(3,4-dicarboxyphenyl) hexafluoropropanedianhydride (6FDA). J. of Membr. Sci. 409?410, 232.
  • Salleh, W.N.W., and Ismail, A.F. (2011). Carbon hollow fiber membranesderived from PEI/PVP for gas separation. Sep. Purif. Technol. 80, 541.
  • Sadrzadeh, M., Saljoughi, E., Shahidi, K., and Mohammadi, T. (2010). Preparation and characterization of a composite PDMS membrane on CAsupport. Polym. Adv. Technol. 21, 568.
  • Ryckebosch, E., Drouillon, M., and Vervaeren, H. (2011). Techniques fortransformation of biogas to biomethane. Biomass and Bioenergy 35, 1633.
  • Rohr, M., and Wimmerstedt. R. (1990). A comparison of two commercialmembranes used for biogas upgrading. Desalination 77, 331.
  • Robeson, L.M. (2008). The upper bound revisited. J. Membr. Sci. 320(1), 390.
  • Robeson, L.M. (1999). Polymer membranes for gas separation. Curr. SolidState Mater. Sci. 4, 549.
  • Robeson, L.M. (1991). Correlation of separation factor versus permeabilityfor polymeric membranes. J. Membr. Sci. 62(2), 165.
  • Rautenbach, R., and Welsch, K. (1994). Treatment of landfill gas by gaspermeation-pilot plant results and comparison to alternatives. J. Membr. Sci. 87(1), 107.
  • Rajabi, Z., Moghadassi, A.R., Hosseini, S.M., and Mohammadi, M. (2013). Preparation and characterization of polyvinylchloride based mixed matrixmembrane filled with multi walled carbon nano tubes for carbon dioxideseparation. J. Ind. Eng. Chem. 19(1), 347.
  • Qin, J.J., and Chung, T.S. (2006). Development of high-performancepolysulfone/poly (4-vinylpyridine) composite hollow fibers for CO2/CH4separation. Desalination 192, 112.
  • Qin, J.J., Chung, T.S., Cao, C., and Vora, R.H. (2005). Effect of temperatureon intrinsic permeation properties of 6FDA-Durene /1,3-phenylenediamine(mPDA) copolyimide and fabrication of its hollow fiber membranes forCO2/CH4 separation. J. Membr. Sci. 250, 95.
  • Puleo, A.C., and Paul, D.R. (1989). The effect of degree of acetylation on gassorption and transport behavior in cellulose acetate. J. Membr. Sci. 47, 301.
  • Powell, C.E., and Qiao, G.G. (2006). Polymeric CO2/N2 gas separationmembranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 279, 1.
  • Powell, C.E., and Qiao, G.G. (2006). Polymeric CO2/N2 gas separationmembranes for the capture of carbon dioxide from power plant flue gases. J. Membr. Sci. 279(1), 1.
  • Pourafshari Chenar, M., Soltanieh, M., Matsuura, T., Tabe-Mohammadi, A.,and Sadeghi, M. (2008). Application of Cardo-type polyimide (PI) andpolyphenylene oxide (PPO) hollow fiber membranes in two-stage membranesystems for CO2/CH4 separation. J. Membr. Sci. 324, 85.
  • Pixton, M.R., and Paul, D.R. (1995). Gas transport properties of adamantanebasedpolysulfones. Polymer 36(16), 3165.
  • Pilato, L.A., Litz, L.M., Hargitay, B., Osborne, R.C., Farnham, A.G., Kawakami,J.H., Fritze, P., and McGrath, J.E. (1975). Polymers for permselectivemembrane gas separations. Polym. Preprints, 16, 42.
  • Petersson, A., and Wellinger, A. (2009). Biogas upgrading technologies ?developments and innovations. IEA Bioenergy Task 37.
  • Peter, J., Khalyavina, A., K?i?, J., and Bleha, M. (2009). Synthesis and gastransport properties of ODPA-TAP-ODA hyperbranched polyimides withvarious comonomer ratios. European Polym. J. 45(6), 1716.
  • Persson, M., Jonsson, O., and Wellinger, A. (2007). Biogas upgrading tovehicle fuel standards and grid injection. IEA Bioenergy Task 37.
  • Perez, E.V., Balkus Jr, K.J., Ferraris, J.P., and Musselman, I.H. (2009). Mixedmatrixmembranes containing MOF-5 for gas separations. J. Membr. Sci. 328, 165.
  • Paul, D.R., and Yampolskii, Y.P. (1994). Polymeric Gas Separation Membranes. Boca Raton, FL, USA: CRC Press.
  • Park, H.B., Jung, C.H., Lee, Y.M., Hill, A.J., Pas, S.J., Mudie, S.T., Wagner,E.V., Freeman, B.D., and Cookson, D.J. (2007). Polymers with cavities tunedfor fast selective transport of small molecules and ions. Science 318, 254.
  • Park, B.R., Kim, D.H., Jo, H.D., Seo, Y.S., Hwang, T.S., and Lee, H.K. (2011). H2S removal and CO2/CH4 separation of ternary mixtures using polyimidehollow fiber membrane. Korean Chem. Eng. Res. 49, 250.
  • Pandey, P., and Chauhan, R.S. (2001). Membranes for gas separation. Prog. Polym. Sci. 26(6), 853.
  • Ostwal, M., Lau, J.M., Orme, C.J., Stewart, F.F., and Way, J.D. (2009). Theinfluence of temperature on the sorption and permeability of CO2 inpoly(fluoroalkoxyphosphazene) membranes. J. Membr. Sci. 344, 199.
  • Nakagawa, T., Nishimura, T., and Higuchi, A. (2002). Morphology and gaspermeability in copolyimides containing polydimethylsiloxane block. J. Membr. Sci. 206, 149.
  • Nagel, C., Gunther-Schade, K., Fritsch, D., Strunskus, T., and Faupel, F. (2002). Free volume and transport properties in highly selective polymermembranes. Macromolecules, 35(6), 2071.
  • Mulder, M. (1996). Basic Principles of Membrane Technology. Dordrecht:Kluwer Academic Publishers.
  • Molino, A., Migliori, M., Ding, Y., Bikson, B., Giordano, G., and Braccio, G. (2013). Biogas upgrading via membrane process: Modelling of pilot plantscale and the end uses for the grid injection. Fuel 107, 585.
  • Moghadam, F., Omidkhah, M.R., Vasheghani-Farahani, E., Pedram, M.Z., andDorosti, F. (2011). The effect of TiO2 nanoparticles on gas transport propertiesof Matrimid5218-based mixed matrix membranes. Sep. Purif. Technol. 77, 128.
  • Mizumoto, T., Masuda, T., and Higashimura, T. (1993). Polymerization of [o-(trimethylgermyl)phenyl]acetylene and polymer characterization. J. Polym. Sci.: Part A: Polym. Chem. 31(10), 2555.
  • Misdan, N. (2010). Thermally rearranged polybenzoxazole (TR-PBO)membranes via diverse synthesis routes for gas separation [Master ?s thesis]. Seoul, Korea: Hanyang University.
  • McHattie, J.S., Koros, W.J., and Paul, D.R. (1992). Gas transport properties ofpolysulphones: 3. Comparison of tetramethyl-substituted bisphenols. Polymer33(8), 1701.
  • McHattie, J.S., Koros, W.J., and Paul, D.R. (1991b). Gas transport propertiesof polysulphones: 2. Effect of bisphenol connector groups. Polymer 32(14),2618.
  • McHattie, J.S., Koros, W.J., and Paul, D.R. (1991a). Gas transport propertiesof polysulphones: 1. Role of symmetry of methyl group placement onbisphenol rings. Polymer 32(5), 840.
  • Mao, Z., Jie, X., Cao, Y., Wang, L., Li, M., and Yuan, Q. (2011). Preparationof dual-layer cellulose/polysulfone hollow fiber membrane and its performancefor isopropanol dehydration and CO2 separation. Sep. Purif. Technol. 77, 179.
  • Makaruk, A., Miltner, M., and Harasek, M. (2010). Membrane biogasupgrading processes for the production of natural gas substitute. Sep. Purif. Technol. 74, 83.
  • Magueijo, V.M., Anderson, L.G., Fletcher, A.J., and Shilton, S.J. (2013). Polysulfone mixed matrix gas separation hollow fibre membranes filledwith polymer and carbon xerogels. Chem. Eng. Sci. 92, 13.
  • Macheras, J.T., Bikson, B., and Nelson, J.K. (1996) Method of preparingmembranes from blends of polymers. EU Patent 0706819Madaeni, S.S., Badieh, M.M.S., and Vatanpour, V. (2013). Effect of coatingmethod on gas separation by PDMS/PES membrane. Polym. Eng. Sci. 53(9),1878.
  • Ma, C., and Koros, W.J. (2013). High-performance ester-crosslinked hollowfiber membranes for natural gas separations. J. Membr. Sci. 428, 251.
  • Luis, P., Van Gerven T., and Van der Bruggen, B. (2012). Recent developmentsin membrane-based technologies for CO2 capture. Prog. EnergyCombust. Sci. 38, 419.
  • Lin, W.H., and Chung, T.S. (2001). Gas permeability, diffusivity, solubility,and aging characteristics of 6FDA-durene polyimide membranes. J. Membr. Sci. 186(2), 183-193.
  • Li, Y., and Chung, T.S. (2010). Silver ionic modification in dual-layer hollowfiber membranes with significant enhancement in CO2/CH4 and O2/N2separation. J. Membr. Sci. 350, 226.
  • Li, Y., and Chung, T.S. (2008). Exploratory development of dual-layer carbonzeolitenanocomposite hollow fiber membranes with high performance for59oxygen enrichment and natural gas separation. Microporous andMesoporous Mater. 113, 315.
  • Li, Y., Chung, T.S., and Xiao, Y. (2008). Superior gas separation performanceof dual-layer hollow fiber membranes with an ultrathin dense-selectivelayer. J. Membr. Sci. 325, 23.
  • Li, S., Jo, H.J., Han, S.H., Park, C.H., Kim, S., Budd, P.M., and Lee, Y.M. (2013). Mechanically robust thermally rearranged (TR) polymer membraneswith spirobisindane for gas separation. J. Membr. Sci. 434, 137.
  • Lee, S., Lee, J.S., Lee, M., Choi, J.-W., Kim, S., and Lee. S. (2014). Separationof sulfur hexafluoride (SF6) from ternary gas mixtures using commercialpolysulfone (PSf) hollow fiber membranes. J. Membr. Sci. 452, 311.
  • Lee, H.I., and Lee, J.S. (1993). Properties and applications of polycarbonate. Polym. Sci. Technol. 4(6), 434.
  • Kosuri, M.R., and Koros, W.J. (2008). Defect-free asymmetric hollow fibermembranes from Torlon?? , a polyamide-imide polymer, for high-pressureCO2 separations. J. Membr. Sci. 320, 65.
  • Koh, H.C., Ha, S.Y., Woo, S.M., Nam, S.Y., Lee, B.S., Lee, C.S., and Choi,W.M. (2011). Separation and purification of bio gas by hollow fiber gasseparation membrane module. Korean Membr. J. 21, 177.
  • Kim, T.H., Koros, W.J., and Husk, G.R. (1988a). Advanced gas separationmembrane materials: rigid aromatic polyimides. Sep. Sci. Technol. 23(12?13), 1611.
  • Kim, T.H., Koros, W.J., Husk, G.R., and O ?Brien, K.C. (1988b). Relationshipbetween gas separation properties and chemical structure in a series ofaromatic polyimides. J. Membr. Sci. 37(1), 45.
  • Kim, S., and Marand, E. (2008). High permeability nano-composite membranesbased on mesoporous MCM-41 nanoparticles in a polysulfone matrix. Microporous and Mesoporous Mater. 114, 129.
  • Kim, S., Han, S.H., and Lee, Y.M. (2012). Thermally rearranged (TR)polybenzoxazole hollow fiber membranes for CO2 capture. J. Membr. Sci. 403, 169.
  • Kim, S., Chen, L., Johnson, J.K., and Marand, E. (2007). Polysulfone andfunctionalized carbon nanotube mixed matrix membranes for gas separation:Theory and experiment. J. Membr. Sci. 294, 147.
  • Kim, H.J., and Hong, S.I. (1999). The transport properties of CO2 and CH4 forbrominated polysulfone membrane. Korean J. Chem. Eng. 16(3), 343.
  • Kim, H.J., and Hong, S.I. (1997). The sorption and permeation of CO2 andCH4 for dimethylated polysulfone membrane. Korean J. Chem. Eng. 14(3),168.
  • Khulbe, K.C., Matsuura, T., Lamarche, G., and Kim, H.J. (1997). The morphologycharacterisation and performance of dense PPO membranes for gasseparation. J. Membr. Sci. 135(2), 211.
  • Kesting, R.E., Fritzsche, A.K., Murphy, M.K., Handermann, A.C., Cruse, C.A.,and Malon, R. F. (1989). Dissolving hydrophobic polymers using lewis acidand lewis base solvent system. US Patent 4871494.
  • Kapantaidakis, G.C., Kaldis, S.P., Dabou, X.S., and Sakellaropoulos, G.P. (1996). Gas permeation through PSF-PI miscible blend membranes. J. Membr. Sci. 110(2), 239.
  • Julian, H., and Wenten, I.G. (2012). Polysulfone membranes for CO2/CH4separation: State of the art. J. Eng. 2(3), 484.
  • Jomekian, A., Pakizeh, M., Mansoori, SAA., Poorafshari, M., Hemmati, M.,and Ataee Dil, P. (2011). Gas transport behavior of novel modified MCM-48/polysulfone mixed matrix membrane coated by PDMS. J. Membr. Sci. Technol. 1(1), 1.
  • Jeon, Y.-W., Shin, M.S., Pak, S.H., and Kim, H.J. (2014). Multi powergenerating system and method using biogas. KR Patent 10-2014-0116936.
  • Ismail, A.F., Kusworo, T.D., and Mustafa, A. (2008). Enhanced gas permeationperformance of polyethersulfone mixed matrix hollow fiber membranesusing novel Dynasylan Ameo silane agent. J. Membr. Sci. 319, 306.
  • Hwang, C.-W., and Jeong, C.-H. (2011). Capture and reduction technology ofgreenhouse gas using membrane from anaerobic digester gas. Korean J. Environ. Sci. 20, 1233.
  • Husain, S., and Koros, W.J. (2007). Mixed matrix hollow fiber membranesmade with modified HSSZ-13 zeolite in polyetherimide polymer matrix forgas separation. J. Membr. Sci. 288(1), 195.
  • Houde, A.Y., Kulkarni, S.S., and Kulkarni, M.G. (1994). Sorption, transport,and history effects in phenolphthalein-based polysulfone. J. Membr. Sci. 95(2), 147.
  • Hoover, J.M., Smith, S.D., DeSimone, J.M., Ward, T.C., and McGrath, J.E. (1987). Gas permeability of well-defined poly(alkyl methacrylate)?poly(dimethylslloxane) graft copolymers, Polym. Preprints 28, 390.
  • Hirayama, Y., Yoshinaga, T., Kusuki, Y., Ninomiya, K., Sakakibara, T., andTamari, T. (1996). Relation of gas permeability with structure of aromaticpolyimides I. J. Membr. Sci. 111, 169.
  • Hillock, A.M., and Koros, W.J. (2007). Cross-linkable polyimide membranefor natural gas purification and carbon dioxide plasticization reduction. Macromolecules 40(3), 583.
  • Henis, J.M.S., and Tripodi, M.K. (1980). Multicomponent membranes for gasseparations. US Patent 4230463.
  • Harasimowicz, M., Orluk, P., and Zakrzewska-Trznadel, G., and Chmielewski,A.G. (2007). Application of polyimide membranes for biogas purificationand enrichment. J. Hazard. Mater. 144, 698.
  • Harasimowicz, M., Orluk, P., Zakrzewska-Trznadel, G., and Chmielewski,A.G. (2007). Application of polyimide membranes for biogas purificationand enrichment. J. Hazard. Mater. 144, 698.
  • Han, S.H., Lee, J.E., Lee, K.J., Park, H.B., and Lee, Y.M. (2010). Highly gaspermeable and microporous polybenzimidazole membrane by thermalrearrangement. J. Membr. Sci. 357, 143.
  • Han, S.H. (2010). Thermally rearranged polymer membranes for gas separations[PhD thesis]. Seoul, Korea: Hanyang University.
  • Hachisuka, H., Ohara, T., Ikeda, K.I., and Matsumoto, K. (1995). Gaspermeation property of polyaniline films. J. Appl. Polym. Sci. 56(11), 1479.
  • Guo, R., Sanders, D.F., Smith, Z.P., Freeman, B.D., Paul, D.R., and McGrath,J.E. (2013). Synthesis and characterization of thermally rearranged (TR)polymers: influence of ortho-positioned functional groups of polyimideprecursors on TR process and gas transport properties. J. Mater. Chem. A 1,262.
  • Guinee, J. (2002). Handbook on life cycle assessment operational guide to theISO standards. Int. J. LCA 7, 311.
  • Ghosal, K., and Chern, R.T. (1992). Aryl-nitration of poly(phenylene oxide)and polysulfone.: Structural characterization and gas permeability. J. Membr. Sci. 72(1), 91.
  • Ghosal, K., Chern, R.T., Freeman, B.D., Daly, W.H., and Negulescu, I.I. (1996). Effect of basic substituents on gas sorption and permeation inpolysulfone. Macromolecules 29(12), 4360.
  • Gas permeation properties of thianthrene-5,5,10,10-tetraoxide-containingpolyimides. Polymer 42(5), 2021.
  • Fritzsche, A.K., Cruse, C.A., Kesting, R.E., and Murphy, M.K. (1990). Hollowfiber membranes spun from lewis acid : Base complexes. I. Structure determinationby oxygen plasma ablation. J. Appl. Polym. Sci., 40, 19.
  • Freeman, B.D. (1999). Basis of permeability/selectivity tradeoff relations inpolymeric gas separation membranes. Macromolecules 32, 375.
  • Figueroa, J.D., Fout, T., Plasynski, S., McIlvried, H., and Srivastava, R.D. (2008). Advances in CO2 capture technology?The U.S. Department ofEnergy's Carbon Sequestration Program. Int. J. Greenhouse Gas Control 2, 9.
  • Dorosti, F., Omidkhah, M.R., Pedram, M.Z., and Moghadam, F. (2011). Fabrication and characterization of polysulfone/polyimide-zeolite mixedmatrix membrane for gas separation. Chem. Eng. J. 171, 1469.
  • Dong, G., Li, H., and Chen, V. (2010). Factors affect defect-free Matrimid??hollow fiber gas separation performance in natural gas purification. J. Membr. Sci. 353, 17.
  • Dinello, M.S., Narayan, R.S., and Patton, C.J. (1989). Bulk CO2 RemovalAchieved Through Membrane Separation. SPE production Eng. 4(01), 88.
  • Deng, L., and Hagg, M.B. (2010). Techno-economic evaluation of biogasupgrading process using CO2 facilitated transport membrane. Int. J. GreenhouseGas Control 4, 638.
  • Chung, T.S., Lin, W.H., and Vora, R.H. (2000). The effect of shear rates ongas separation performance of 6FDA-durene polyimide hollow fibers. J. Membr. Sci. 167, 55.
  • Chung, T.S., Kafchinski, E.R., and Foley, P. (1992). Development of asymmetrichollow fibers from polyimides for air separation. J. Membr. Sci. 75,181.
  • Chung, T.S., Kafchinski E.R., and Vora, R. (1994). Development of a defectfree6FDA-durene asymmetric hollow fiber and its composite hollow fibers. J. Membr. Sci., 88(1), 21.
  • Choi, J.I., Jung, C.H., Han, S.H., Park, H.B., and Lee, Y.M. (2010). Thermallyrearranged (TR) poly(benzoxazole-co-pyrrolone) membranes tuned for highgas permeability and selectivity. J. Membr. Sci. 349, 358.
  • Chmielewski, A.G., Urbaniak, A., and Wawryniuk, K. (2013). Membraneenrichment of biogas from two-stage pilot plant using agricultural waste asa substrate. Biomass and Bioenergy 58, 219.
  • Chiu, W.V., Park, I.-S., Shqau, K., White, J.C., Schillo, M.C., Ho, W.S.W.,Dutta, P.K., and Verweij, H. (2011). Post-synthesis defect abatement ofinorganic membranes for gas separation. J. Membr. Sci. 377, 182.
  • Chiou, J.S., and Paul, D.R. (1988). Gas permeation in a dry Nafion membrane. Ind. Eng. Chem. Res. 27(11), 2161.
  • Chenar, M.P., Soltanieh, M., Matsuura, T., Tabe-Mohammadi, A., and Feng, C. (2006). Gas permeation properties of commercial polyphenylene oxide andCardo-type polyimide hollow fiber membranes. Sep. Purif. Technol. 51, 359.
  • Chan, S.S., Chung, T.S., Liu, Y., and Wang, R. (2003). Gas and hydrocarbon(C2 and C3) transport properties of co-polyimides synthesized from 6FDAand 1,5-NDA(naphthalene)/Durene diamines. J. Membr. Sci. 218(1?2), 235.
  • Chan, A.H., Koros, W.J., and Paul, D.R. (1978). Analysis of hydrocarbon gassorption and transport in ethyl cellulose using the dual sorption/partialimmobilization models. J. Membr. Sci. 3(2), 117.
  • Cao, C., Wang, R., Chung, T.S., and Liu, Y. (2002). Formation of highperformance6FDA-2,6-DAT asymmetric composite hollow fiber membranesfor CO2/CH4 separation. J. Membr. Sci. 209, 309.
  • Cao, C., Chung, T.S., Liu, Y., Wang, R., and Pramoda, K.P. (2003). Chemicalcross-linking modification of 6FDA-2,6-DAT hollow fiber membranes fornatural gas separation. J. Membr. Sci. 216, 257.
  • Camacho-Zuniga, C., Ruiz-Trevino, F.A., Hernandez-Lopez, S., Zolotukhin,M.G., Maurer, F.H.J., and Gonzalez-Montiel, A. (2009). Aromaticpolysulfone copolymers for gas separation membrane applications. J. Membr. Sci. 340(1), 221.
  • Calle, M., and Lee, Y.M, (2011). Thermally rearranged (TR) poly(etherbenzoxazole)membranes for gas separation. Macromolecules 44, 1156.
  • Cakal, U., Yilmaz, L., and Kalipcilar, H. (2012). Effect of feed gas compositionon the separation of CO2/CH4 mixtures by PES-SAPO 34-HMA mixedmatrix membranes. J. Membr. Sci. 417, 45.
  • Budd, P.M., Msayib, K.J., Tattershall, C.E., Ghanem, B.S., Reynolds, K.J.,McKeown, N.B., and Fritsch, D. (2005). Gas separation membranes frompolymers of intrinsic microporosity. J. Membr. Sci. 251(1), 263.
  • Brunetti, A., Scura, F., Barbieri, G., and Drioli, E. (2010). Membrane technologiesfor CO2 separation. J. Membr. Sci. 359, 115.
  • Brunetti, A., Drioli, E., Lee, Y.M., and Barbieri, G. (2014). Engineeringevaluation of CO2 separation by membrane gas separation systems. J. Membr. Sci. 454, 305.
  • Bos, A., Punt, I.G.M., Wessling, M., and Strathmann, H. (1998). CO2-inducedplasticization phenomena in glassy polymers. J. Membr. Sci. 155, 57.
  • Bhide, B.D., and Stren, S.A. (1993). Membrane processes for the removal ofacid gases from natural gas. I. Process configurations and optimization ofoperating conditions. J. Membr. Sci. 81(3), 209.
  • Belmabkhout, Y., De Weireld, G., and Sayari, A. (2009). Amine-bearingmesoporous silica for CO2 and H2S removal from natural gas and biogas. Langmuir 25, 13275.
  • Basu, S., Khan, A.L., Cano-Odena, A., Liu, C., and Vankelecom, I.F.J. (2010b). Membrane-based technologies for biogas separations. Chem. Society Rev. 39, 750.
  • Basu, S., Cano-Odena, A., and Vankelecom, I.F.J. (2010a). Asymmetricmembrane based on Matrimid?? and polysulphone blends for enhancedpermeance and stability in binary gas (CO2/CH4) mixture separations. Sep. Purif. Technol. 75, 15.
  • Barta, Z., Reczey, K., and Zacchi, G. (2010). Techno-economic evaluation ofstillage treatment with anaerobic digestion in a softwood-to-ethanol process. Biotechnol. for Biofuels 3, 21.
  • Barrer, R.M. (1984). Diffusivities in glassy polymers for the dual modesorption model. J. Membr. Sci. 18, 25.
  • Barbari, T.A., Koros, W.J., and Paul, D.R. (1989). Polymeric membranesbased on bisphenol-A for gas separations. J. Membr. Sci. 42(1), 69.
  • Barbari, T.A., Koros, W.J., and Paul, D.R. (1988). Gas sorption in polymersbased on bisphenol?A. J. Polym. Sci.: Part B: Polym. Phys. 26(4), 729.
  • Baker, R.W., Cussler, E.L., Eykamp W., Koros, W.J., and Riley, R.L. (1991). Membrane Separation Systems: Recent Developments and Future Directions. US: Noyes Data Corporation.
  • Baker, R.W. (2002). Future directions of membrane gas separation technology. Ind. Eng. Chem. Res. 41(6), 1393.
  • Ayala, D., Lozano, A.E., de Abajo, J., Garcia-Perez, C., de la Campa, J.G.,Peinemann, K.-V., Freeman, B.D., and Prabhakar, R. (2003). Gas separationproperties of aromatic polyimides. J. Membr. Sci. 215(1?2), 61.
  • Askari, M., Yang, T., and Chung, T.S. (2012b). Natural gas purification andolefin/paraffin separation using cross-linkable dual-layer hollow fibermembranes comprising -Cyclodextrin. J. Membr. Sci. 423?424, 392.
  • Askari, M., Xiao, Y., Li, P., and Chung, T.S. (2012a). Natural gas purificationand olefin/paraffin separation using cross-linkable 6FDA-Durene/DABAco-polyimides grafted with , , and -cyclodextrin. J. Membr. Sci. 390,141.
  • Al-Masri, M., Kricheldorf, H.R., and Fritsch, D. (1999). New polyimides forgas separation. 1. Polyimides derived from substituted terphenylenes and4,4'-(hexafluoroisopropylidene) diphthalic anhydride. Macromolecules32(23), 7853.
  • Aitkin, C.L., and Paul, D.R. (1993). Gas transport properties of polysulfonesbased on dihydroxynaphthalene isomers. J. Polym. Sci.: Part B: Polym. Phys. 31(8), 1061.
  • Aitken, C.L., Koros, W.J., and Paul, D.R. (1992). Gas transport properties ofbiphenol polysulfones. Macromolecules 25, 3651.
  • Aitken, C.L., Koros, W.J., and Paul, D.R. (1992). Effect of structural symmetryon gas transport properties of polysulfones. Macromolecules 25(13),3424.
  • Ahn, J., Chung, W.J., Pinnau, I., and Guiver, M.D. (2008). Polysulfone/silicananoparticle mixed-matrix membranes for gas separation. J. Membr. Sci. 314, 123.
  • Adewole, J.K., Ahmad, A.L., Ismail, S., Leo, C.P. (2013) Current challengesin membrane separation of CO2 from natural gas: A review. Int. J. GreenhouseGas Control 17, 46.
  • Adams, R.T., Lee, J.S., Bae, T.H., Ward, J.K., Johnson, J.R., Jones, C.W., Nair,S., and Koros, W.J. (2011). CO2-CH4 permeation in high zeolite 4A loadingmixed matrix membranes. J. Membr. Sci. 367, 197.
  • Abatzoglou, N., and Boivin, S. (2009). A review of biogas purificationprocesses. Biofuels, Bioproducts and Biorefining 3, 42.
  • ?en, D., Kal??pc??lar, H., and Yilmaz, L. (2007). Development of polycarbonatebased zeolite 4A filled mixed matrix gas separation membranes. J. Membr. Sci. 303(1), 194.
  • 115Scholz, M., Melin, T., and Wessling, M. (2013). Transforming biogas into biomethaneusing membrane technology. Renew. Sustain. Energy Rev. 17, 199.